# TEXNOАОГIKO EKПAIДEYTIKO IДPYMA $\Delta Y T . ~ E \Lambda \Lambda A \Delta A \Sigma ~$ 

玉XOAH: IIOIKH工Hะ \& OIKONOMIA TMНМА $\Lambda О Г I \Sigma T I K H \Sigma ~ \& ~ X P H M A T O O I K O N O M I K H \Sigma ~$П Т Y X I A K H E P Г A $\boldsymbol{\Sigma}$ I A



ПАХY $\triangle$ AKH ANTQNIOY EAENH<br><br>ФОYPKA $\triangle$ НННTPIOY ГАВРIHА

EISHГHTPIA
$\Gamma \Omega P \Gamma I A \Delta O Y$ NIKH Елíкоv $\dagger \boldsymbol{K} \alpha \theta \eta \gamma \eta ́ \tau \rho \iota \alpha$

$$
\text { M E } \Sigma \text { O } \Lambda \text { O } \Gamma \Gamma \text { I } 20015
$$

# TEXNO＾OГIKO EKПAIUEYTIKO IДPYMA $\Delta Y T$. $\mathbf{E} \boldsymbol{\Lambda} \mathbf{\Lambda A} \mathbf{\Delta} \mathbf{A} \mathbf{\Sigma}$ 

玉XOAH：$\triangle$ IOIKHEH $\mathcal{\&}$ OIKONOMIA TMHMA： $\boldsymbol{\Lambda}$ OГIГTIKHะП T $\quad$ Y X I A K H $\begin{array}{lllllll}\mathbf{E} & \mathbf{P} & \boldsymbol{\Gamma} & \mathbf{A} & \boldsymbol{\Sigma} & \mathbf{I} & \mathbf{A}\end{array}$

##  THE EPГAГIA天

ПАХYДAKH ANTתNIOY EAENH（A．M．14746） elenpach＠logistiki．teimes．gr MANTA $\Sigma A B B A$ ГЕЛРГIOะ（А．М．14163）<br>geormant3＠logistiki．teimes．gr ФOYPKA ДНМНТРIOY ГАВРIHД（А．M．14367）<br>gavrfour＠logistiki．teimes．gr

EI工HГHTPIA<br>ГЕЛРГIAAOY NIKH





## ПЕРІАНЧН

Н $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ غ ́ \gamma เ \nu \varepsilon ~ \sigma \tau \alpha ~ \pi \lambda \alpha i ́ \sigma ı \alpha ~ о \lambda о к \lambda \eta ́ \rho \omega \sigma \eta \varsigma ~ \tau \omega v ~ \sigma \pi о v \delta \dot{\omega} \nu \mu \alpha$


 $\pi о v \beta$ рі́бкєтаı бє крі́бף.









To $0 \varepsilon ́ \mu \alpha ~ \tau o v ~ \delta \varepsilon v \tau \varepsilon ́ \rho o v ~ к \varepsilon \varphi \alpha \lambda \alpha i ́ o v ~ \varepsilon i ́ v \alpha ı ~ o l ~ « М \eta \chi \alpha v ı \sigma \mu о i ́ ~ E v \varepsilon \lambda ı \xi ̌ i ́ \alpha s ~ \tau \eta \varsigma ~$









 $\mu \varepsilon ́ \lambda \eta ~ о к к о \gamma \varepsilon v \varepsilon і ́ \alpha \varsigma) . ~$
 $\sigma v v \delta ı \kappa \alpha \lambda \iota \sigma \mu \circ v ́ \quad \mu \varepsilon ́ \sigma \alpha$ алó $\tau \eta v \pi \alpha \rho о v \sigma i ́ \alpha \sigma \eta ~ \tau \omega v ~ \rho \varepsilon v \mu \alpha ́ \tau \omega \nu ~ \pi о v ~ \sigma v v \varepsilon ́ \beta \alpha \lambda \alpha \nu ~ \sigma \tau \eta \nu$







 $\alpha д \lambda \lambda \varepsilon \varsigma ~ \mu о \rho \varphi \varepsilon ́ \varsigma ~ \pi о v ~ \alpha v \tau \eta ́ ~ \varepsilon ́ \chi \varepsilon ı ~ \sigma \tau \eta \nu ~ E \lambda \lambda \alpha ́ \delta \alpha ~ к \alpha ı ~ \sigma \tau \eta \nu ~ \varepsilon v \rho \omega \pi \alpha \ddot{\kappa \eta ́ ~ ’ E v \omega \sigma \eta . ~ М \varepsilon ́ \sigma \alpha ~ \alpha \pi o ́ ~}$





 $\alpha v \tau \varepsilon ́ \varsigma ~ \tau ı \varsigma ~ \mu о \rho \varphi \varepsilon ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~ Т о ~ к \varepsilon \varphi \alpha \lambda \alpha i ́ o ~ о \lambda о к \lambda \eta \rho ळ ́ v \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \alpha v \alpha \varphi о \rho \alpha ́ ~ \sigma \tau \eta \nu ~ \pi \rho о \sigma \varphi о р \alpha ́ ~ \pi о v ~$


 $\kappa \alpha \tau \alpha \pi о \lambda \varepsilon ́ \mu \eta \sigma \eta ~ \tau \eta \varsigma ~ \alpha v \varepsilon \rho \gamma i ́ \alpha \varsigma$.

То $\pi \varepsilon ́ \mu \pi \tau о ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı о ~ \varepsilon ́ \chi \varepsilon ı ~ \theta \varepsilon ́ \mu \alpha ~ \tau \eta \nu ~ « \alpha \pi о \rho \rho и ́ \theta \mu ı \sigma \eta ~ \varepsilon \rho \gamma \alpha \sigma ı \alpha к ळ ́ v ~ \sigma \chi \varepsilon ́ \sigma \varepsilon \omega v » . ~$








- кат $\alpha \gamma \gamma \varepsilon \lambda i ́ \alpha ~ \sigma ט ́ \mu \beta \alpha \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \alpha o \rho i ́ \sigma \tau о v ~ \chi \rho o ́ v o v ~ к \alpha ı ~ к \alpha \tau \alpha ß о \lambda \eta ́ ~ \alpha \pi о \zeta ̧ \eta \mu i ́ \omega \sigma \eta \varsigma ~$




Н $\pi \alpha \rho о v ́ \sigma \alpha$ $\pi \tau \cup \chi 1 \alpha к \eta ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ к \lambda \varepsilon i ́ v \varepsilon ı ~ \mu \varepsilon ~ \tau \alpha ~ \sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha ́ ~ \mu \alpha \varsigma, ~ \gamma ı \alpha ~ \tau \eta \nu$






 $\pi \alpha \rho о v \sigma i ́ \alpha \sigma \eta ~ \tau \omega v ~ \delta \iota \alpha \tau v \pi \omega \mu \varepsilon ́ v \omega v ~ v о \mu ו \kappa ळ ́ v ~ \alpha \pi o ́ \psi \varepsilon \omega v, ~ \sigma \tau \imath \varsigma ~ о \pi о i ́ \varepsilon \varsigma ~ \pi \alpha \rho \alpha \pi \varepsilon ́ \mu \pi о v \mu \varepsilon ~ \mu \varepsilon ́ \sigma \alpha ~ \alpha \pi о ́ ~$
 каı vоцıко́ $\alpha v \alpha \gamma v ต ́ \sigma \tau \eta$.

## ПINAKA ПEPIEXOMEN $\Omega$

ПЕРІАНЧН ..... iii
ПINAKAᄃ ПЕРIEXOMEN $\Omega$ N ..... vi
КАТААОГОГ ПINAK $\Omega \mathrm{N}$ - $\triangle \mathrm{I} А Г Р А М М А Т \Omega N ~$ ..... X
ПINAKE $\Sigma$ ..... X
$\triangle$ ІАГРАММАТА ..... X
ЕІГАГ $\Omega Г Н$ ..... xi
1 ЕРГАГIA ..... 1
 ..... 1
 ..... 1
1.1.2 Еג入ŋขорюнаӥко́я ко́бноя ..... 1
 ..... 2
1.2 OPILMOI ..... 3
1.2.1 Ерүатıкó סíкаıо ..... 3
 ..... 4
 ..... 5
1.2.4 Абүа入ıбтוкó ..... 5
 ..... 6
1.3 TO ЕРГАТIKO $\Delta$ IKAIO KAI H E $\Xi \mathrm{E} \Lambda I \Xi H$ TOY ..... 7
 ЕҮР $\Omega$ ПАЇКН ЕN $\Omega \Sigma Н$ ..... 10
 ..... 15
2.1 $\Omega$ PAPIO ГЕNIKA ..... 15
 ..... 15
2.1.2 $М \varepsilon є \omega \mu \varepsilon ́ v o ~ \omega \rho \alpha ́ \rho ı o ~ \gamma ı \alpha \pi \alpha ı \delta ı \alpha ́ ~ \mu \varepsilon ~ \alpha v \alpha \pi \eta \rho i ́ \alpha ~$ ..... 15
2.1.3 Nó $\quad$ ィцо $\Omega \rho \alpha ́ p ı ~$ ..... 16
2.1.4 $\Sigma$ v $\mu \beta \alpha \tau \iota к o ́ ~ \Omega \rho \alpha ́ p ı o ~$ ..... 16
2.1.5 ПєvӨ́́ $\mu \varepsilon \rho о$ ..... 17
 ..... 17
2.1.7 Ацоґŋ́ Кvрıки́s ..... 17
2.2 МОРФЕГ ЕҮЕЛIKTHГ АПАГХОЛНГHГ (FLEXIBLE WORKING) ..... 19
2.2.1 Мєрıкŋ́ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta$ ..... 19
2.2.2 Пробшрıvŋ́ $\alpha \pi \alpha \sigma \chi \dot{\lambda} \lambda \eta \sigma \eta$ ..... 19
2.2.3 $\Sigma$ v́ $\mu \beta \alpha \sigma \eta$ Opıб $\mu$ と́vov Xpóvov ( $\Sigma \mathrm{OX}$ ) ..... 21
2.2.4 Елохıки́ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta$ ..... 21
2.2.5 $\Delta \alpha \nu \varepsilon \iota \sigma \mu o ́ \varsigma ~ \varepsilon \rho \gamma \alpha \zeta о \mu \varepsilon ́ v \omega v$. ..... 22
 ..... 23
 23
 ..... 23
 ..... 26
2.2.10 $\Delta$ ıаночрабно́ऽ $\chi$ рóvov єрүабías (work sharing) ..... 26
2.2.11 Ерүабía $\mu \varepsilon$ то ко $\mu \mu \alpha ́ \tau \iota-\varphi \alpha \sigma o ́ v-\eta ́ v \pi \varepsilon \rho \gamma о \lambda \alpha \beta i ́ \alpha ~$ ..... 26
2.2.12 Tŋ $\lambda \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$ ..... 26
2.2.13 $\Delta i \alpha \theta \varepsilon \sigma \not \mu o ́ \tau \eta \tau \alpha$ Ep $\gamma \sigma$ oí $\alpha$ (on call work) ..... 27
2.2.14 Кик $\lambda \iota к \mathfrak{~ E \rho \gamma \alpha \sigma i ́ \alpha ~}$ ..... 27
 ..... 27
 ..... 28
 ..... 28
$3 \quad \Sigma \mathrm{YN} \Delta \mathrm{IKA} A I \Sigma T I K O$ KINHMA ..... 29
 ..... 29
 ..... 34
 I $\triangle$ PY $\Sigma H$ T $\Omega$ N $\Pi$ P $\Omega$ T $\Omega$ N $\Sigma \Omega M A T I \Omega N$ ..... 37
3.3 ПPOOПTIKE KAI ME $\Lambda \Lambda$ ONTIKE $\Sigma$ E $\Xi E \Lambda I \Xi E I \Sigma$ ..... 38
3.4 АПОГYNDIKAへILMO ..... 42
4 Н ЕҮР $\Omega$ ПАЇКН $\triangle$ IAГТАГН TНГ ЕРГ ..... 48
4．1 EK ПЕРІТРОПНг ЕРГАГIA $\Sigma$ THN E．E．KAI H EİO $\Delta \mathrm{O} \Sigma$ TH $\Sigma \Sigma T H N$ Е $\Lambda \Lambda H N I K H$ АГОРА ЕРГАГIAᄃ． ..... 48
4．1．1 Ек $\pi \varepsilon \rho ı \tau \rho о \pi \grave{\varsigma} \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$. ..... 48
4．1．2 Мєрıкŋ́ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta$ ..... 49
4．1．3 $\mathrm{H} \varepsilon \xi \dot{\varepsilon} \lambda 1 \xi ŋ \eta \tau \omega v \sigma \nu \mu \beta \alpha ́ \sigma \varepsilon \omega v \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma$. ..... 50
 ..... 55
 ..... 56
4.2 ПЛЕONEKTHMATA－MEIONEKTHMATA． ..... 60
 МОРФЕГ АПАГХОАНГНГ ..... 65
4.4 ПЕPIOPILMOI TH乏 ANEPГIA乏 ..... 66
5 АПОРРҮ $М М І Н Н ~ Е Р Г А Г І А К ~ \Omega N ~ \Sigma X E ~ \Sigma E ~ \Omega N ~$ ..... 69
5.1 ЕІГАГ $Г Н$ ..... 69
201271
 ..... 72
 T $\Omega$ N MOPФ $\Omega$ Е ЕРГАГIA $\Sigma ~ \Sigma T H N ~ Е Ү Р \Omega П А І ̈ К Н ' Е N \Omega \Sigma Н ~$ ..... 74
$5.5 \quad \Sigma$ Y$\Sigma X E T I \Sigma H$ KPI $\Sigma H \Sigma$ - АПOPPY@MI $\Sigma \Sigma$ (ПPOOПTIKE $\Sigma$ E$\Sigma T H N$ АГОРА ЕРГАГIA KAI T $\Omega$ N ЕРГАГIAK $\Omega \mathrm{N} \Sigma \mathrm{XE} \Sigma \mathrm{E} \Omega \mathrm{N}$ )80
ᄃXELERN82
ГҮМПЕРАГМАТА ..... 106
ВІВАІОГРАФІА ..... 112
NOMO ..... 114
 ..... 115

## KATAヘOГO玉 ПINAK $\mathbf{\Omega N}$ - $\boldsymbol{\triangle I A Г P A M M A T \Omega N ~}$

## MINAKE

51
Пívaкац 5.2: Oı vદ́єऽ $\pi \rho о \sigma \lambda \eta ์ \psi \varepsilon ı \varsigma ~ \alpha v \alpha ́ ~ \varepsilon i ́ \delta o \varsigma ~ \sigma u ́ \mu \beta \alpha \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~$ ..... 51
52
 ..... 58
 Eрүабías. ..... 60
ДIАГРАММАТА
 12. ..... 50
 ..... 52
 врүабі́ач. ..... 53
 ..... 53
54

## ЕІІАГ $\Omega Г Н$

$\Sigma \varepsilon$ ह́va $\sigma v v \varepsilon \chi \omega ́ \varsigma ~ \mu \varepsilon \tau \alpha \beta \alpha \lambda \lambda o ́ \mu \varepsilon v o ~ \varepsilon \rho \gamma \alpha \sigma ı \alpha к o ́ ~ \pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda д \nu, ~ \varepsilon v ~ \mu \varepsilon ́ \sigma \omega ~$





 Evрஸ́тŋ $\gamma \varepsilon \vee \iota \kappa o ́ \tau \varepsilon \rho \alpha$.









 $\omega \rho \alpha \rho i ́ o v ~ к \alpha ı ~ \eta ~ \mu \varepsilon i ́ \omega \sigma \eta ~ \tau \omega v ~ \mu \iota \sigma \theta \omega ́ v ~ \sigma \varepsilon ~ \lambda о \gamma ı \kappa \alpha ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha, ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \varepsilon ı ~ \varepsilon ́ v \alpha ~$






 $\kappa \nu \beta \varepsilon ́ \rho v \eta \sigma \eta ~ \alpha \lambda \lambda \alpha ́ \alpha ~ \kappa \alpha l ~ \sigma \alpha \nu ~ \varepsilon v \omega \mu \varepsilon ́ v \eta ~ E v \rho ต ́ \pi \eta . ~$

То $\mu \varepsilon ́ \chi \rho ı ~ \tau ต ́ \rho \alpha ~ \delta ı \alpha \mu о \rho \varphi \omega \mu \varepsilon ́ v о ~ \tau о \pi i ́ o ~ \delta i ́ v \varepsilon ı ~ \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ \alpha v \alpha \varphi о \rho \alpha ́ \varsigma ~ \sigma \tau \eta v ~ \delta i ́ v \eta ~$





 EUROSTAT.










 крíбєıऽ $\sigma \tau о \mu$ е́ $\lambda \lambda о$.

## 1 ЕРГАГIA

### 1.1 ILTOPIKH ANAAPOMH EPГALIAL KAI EPГALIAK日N EXE 2 ERN

### 1.1.1 H ठоvдвí $\alpha \alpha \tau \alpha ́ ~ \tau \eta \nu ~ A \rho \chi \alpha ı o ́ \tau \eta \tau \alpha$











 $\varepsilon \pi \imath \kappa \varepsilon \rho \delta \varepsilon ́ \sigma \tau \alpha \tau \circ$ вíסoऽ $\varepsilon \mu \pi о \rho i ́ o v$.
$\Sigma \tau \eta \nu \alpha \rho \chi \alpha i ́ \alpha ~ A i ́ \gamma v \pi \tau о ~ \chi \lambda \lambda \alpha ́ \delta \varepsilon \varsigma ~ \sigma \kappa \lambda \alpha ́ \beta o \imath ~ \alpha \pi o ́ ~ \alpha ı \chi \mu \alpha \lambda \omega \sigma i ́ \varepsilon \zeta ~ \varepsilon ́ \pi \varepsilon ı \tau \alpha ~ \alpha \pi o ́ ~$

 Фараю́. Oı I $\sigma \rho \alpha \eta \lambda i ́ t \varepsilon \varsigma ~ \varepsilon i ́ \chi \alpha v ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \delta o v ́ \lambda o v \varsigma, ~ \eta ́ \tau \alpha v ~ o ́ \mu \omega \varsigma ~ v \pi о \chi \rho \varepsilon \omega \mu \varepsilon ́ v o t ~ v \alpha ~ \varepsilon \lambda \varepsilon v \theta \varepsilon \rho \omega ́ \sigma o v v ~$


## 




[^0]











 $\Sigma \pi \alpha \rho \tau \iota \alpha ́ \tau \eta ~(К о \rho \delta \alpha ́ \tau o \varsigma, ~ 1972) . ~$

### 1.1.3 Н $\mu \varepsilon \tau \alpha ́ \beta \alpha \sigma \eta ~ \alpha \pi o ́ ~ \tau o v ~ o ́ p o ~ \delta o v ́ \lambda o \varsigma ~ \sigma \tau o v ~ o ́ \rho o ~ \varepsilon \rho \gamma \alpha ́ \tau \eta ~$


















 Bpetaví ${ }^{2}$.











### 1.2 OPILMOI

### 1.2.1 Eрүатıкó סíк๙ıo










[^1]








 $\varepsilon \theta v i \kappa o ́ ~ \tau o v s ~ \delta i ́ к \alpha ı ~ к \alpha ı ~ \tau \eta \nu ~ \varepsilon \varphi \alpha \rho \mu o ́ \zeta o v v, ~ \varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta ̆ о \nu \tau \alpha \varsigma ~ \varepsilon ́ \tau \sigma ı ~ \varepsilon ́ v \alpha ~ \varepsilon \pi i ́ \pi \varepsilon \delta o ~ \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha s ~$





 $\sigma \varepsilon \sigma \tau \rho \varepsilon ́ \beta \lambda \omega \sigma \eta$ тоv $\alpha v \tau \alpha \gamma \omega v \imath \sigma \mu$ v́.



 бíк人ıo, 2014).

### 1.2.2 Ерү $\alpha \sigma \iota \alpha \varepsilon ́ \varsigma ~ \sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~$


 $\nu \varphi \imath \sigma \tau \alpha \mu \varepsilon ́ v \omega v ~ \alpha \lambda \lambda \alpha ́ \kappa \alpha ı ~ \varepsilon \rho \gamma \alpha \zeta о \mu \varepsilon ́ v \omega v ~ \varepsilon v \tau o ́ s ~ \tau \omega v ~ \chi \omega ́ \rho \omega v ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~$
 коเขตvıки́ દ́vтаร̌ఇ-Ерүатıкó סíкаı, 2014):
 $\pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon$ :








- Tov $\theta \varepsilon \sigma \mu$ ó $\tau \eta \varsigma ~ \delta ı \alpha ı \tau \eta \sigma i ́ \alpha \varsigma ~(\pi \rho о \alpha ı \rho \varepsilon \tau ı к \grave{\varsigma ~ \eta ́ ~ v \pi о \chi \rho \varepsilon \omega \tau ı к ŋ ́ s) . ~} \Sigma \tau \eta \nu \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta$
 $\lambda о \imath \pi о i ́ ~ \varphi о \rho \varepsilon i ́ c . ~$





### 1.2.3 Ек-лєрıтролŋ́ऽ єрү $\alpha \sigma i ́ \alpha-\Pi \lambda \eta ́ \rho \eta \varsigma ~ \alpha \pi \alpha \sigma \chi$ о́ $\lambda \eta \sigma \eta$








 $\varepsilon \pi \downarrow \chi \varepsilon i ́ p \eta \sigma \eta \varsigma ~ \sigma u v \varepsilon \chi i ́ \zeta \varepsilon \tau \alpha l(\Delta \varepsilon \delta о v \sigma o ́ \pi о \cup \lambda \circ \varsigma, 2000)$.

### 1.2.4 Абрадıбтıкó

H $\alpha \sigma \varphi \alpha ́ \lambda ı \sigma \eta$ عíval $\sigma v ́ \mu \beta \alpha \sigma \eta ~ \pi о v ~ \kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \varepsilon i ́ \tau \varepsilon ~ \mu \varepsilon ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \eta ~ \beta о v ́ \lambda \eta \sigma \eta ~ \eta ́ ~$

 $\kappa \alpha \tau \alpha \beta \alpha ́ \lambda \lambda \varepsilon \tau \alpha 1 \quad \alpha \pi o ́ ~ \tau о ~ \alpha ́ \lambda \lambda о ~ \mu \varepsilon ́ \rho o \varsigma ~ \tau \eta \varsigma ~ \sigma ט ́ \mu \beta \alpha \sigma \eta \varsigma ~(\alpha \sigma \varphi \alpha \lambda ı \sigma \mu \varepsilon ́ v o v) ~ \tau \eta \nu ~ v \pi о \chi \rho \varepsilon ́ \omega \sigma \eta ~ v \alpha$









##  $\pi \varepsilon ı \theta \rho \chi i^{\alpha} \alpha$





 ( $\sigma \varepsilon \mu \varepsilon \rho ı \kappa \varepsilon ́ \varsigma ~ \pi \varepsilon \rho ı \tau \tau \dot{\sigma \varepsilon є \varsigma) ~ о и ́ \tau \varepsilon ~ к \alpha l ~ v \alpha ~ к \alpha \tau \alpha v о \eta ́ \sigma о v v ~ \pi \lambda \eta ́ \rho \omega \varsigma ~ \tau \eta v ~ \alpha v \alpha \gamma к \alpha ı o ́ \tau \eta \tau \alpha ́ ~ \tau \eta \varsigma . ~}$

 бьо́кпбף.










- А $\pi \omega ் \lambda \varepsilon ı \alpha ~ \chi \rho o ́ v o v: ~ \eta ~ \pi \varepsilon ı \theta \alpha \rho \chi i ́ \alpha ~ \gamma ı \alpha ~ v \alpha ~ \gamma i ́ v e ı ~ \sigma \omega \sigma \tau \alpha ́ ~ \alpha \pi \alpha ı \tau \varepsilon i ́ ~ \pi о \lambda v ́ ~ \chi \rho o ́ v o . ~ Y \pi \alpha ́ \rho \chi o v v ~$





 каı тоv $\alpha \pi \alpha \gamma \gamma \varepsilon$ í


 $\varepsilon \pi 1 \pi \lambda \eta \xi{ }^{2} \mathrm{ovv}$.

 $\tau \eta \lambda \eta \dot{\eta} \eta \mu \varepsilon ́ \tau \rho \omega v \pi о v \theta \alpha$ غ́ $\rho \rho \varepsilon \pi \varepsilon v \alpha \pi \alpha ́ \rho o v v$.







### 1.3 TO EPГATIKO $\triangle I K A I O ~ K A I ~ H ~ E E E A I E H ~ T O Y ~$





 олоі́ $\alpha$ бvvvла́ $\rho \chi \varepsilon ı ~ \sigma \tau \eta \nu ~ i ́ \delta ı \alpha ~ о \mu \alpha ́ \delta \alpha ~ \mu \varepsilon ~ \tau \alpha ~ \theta \varepsilon ́ \mu \alpha \tau \alpha ~ \pi о v ~ \alpha \varphi о \rho о и ́ v ~ \mu i ́ \sigma \theta \omega \sigma \eta ~ \pi \rho \alpha ́ \gamma \mu \alpha \tau о \varsigma, ~$ $\mu i ́ \sigma \theta \omega \sigma \eta \kappa \tau \eta \prime \mu \alpha \tau \circ \varsigma \kappa \lambda \pi$.







 $\gamma 1 \alpha \tau \alpha \delta \kappa \alpha ı \omega ́ \mu \alpha \tau \alpha \tau \omega v$ вр $\gamma \alpha \zeta о \mu \varepsilon ́ v \omega v^{3}$.
 $\pi о \lambda \imath \tau เ к \varepsilon ́ \varsigma ~ к \alpha ı ~ \tau \alpha ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \delta \eta \mu ю \cup \rho \gamma i ́ \alpha \varsigma ~ к \alpha ı ~ \delta ı \alpha \sigma \varphi \alpha ́ \lambda ı \sigma \eta \varsigma ~ Ө \varepsilon ́ \sigma \varepsilon \omega v ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma, ~ \tau \alpha ~$



 $\varepsilon \varphi \alpha \rho \mu о \gamma \grave{\varsigma}$ тоv.

 ó $\mu \omega \varsigma$ va $\lambda \varepsilon ı \tau о \cup \rho \gamma \varepsilon i ́ ~ \mu \varepsilon \tau \alpha ́ ~ \alpha \pi o ́ ~ 25 ~ \chi \rho o ́ v ı \alpha ~ \pi \varepsilon \rho i ́ \pi о v ~(1861) . ~ . ~$





Oı $\alpha v \tau \downarrow \lambda \eta \dot{\psi \varepsilon \iota \varsigma ~ \pi o v ~ v \pi \alpha ́ \rho \chi o v v ~ v \pi o ́ ~ \tau \eta \nu ~ \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta ~ \alpha v \tau o v ́ ~ \tau o v ~} \pi \rho \circ \beta \lambda \eta \mu \alpha \tau \iota \sigma \mu о v ́$




 үvvaıкஸ́v каı $\alpha v \eta \lambda i ́ \kappa \omega v » ~(1912), ~ \tau \eta v ~ « i ́ \delta \rho v \sigma v v ~ \sigma \omega \mu \alpha \tau \varepsilon i ́ \omega v » ~(1914), ~ \tau \eta v ~ « \alpha \pi о \zeta ŋ \mu i ́ \omega \sigma v v ~ \varepsilon \pi i ́$


[^2]






 «Eıסıкоט́ $\Sigma \dot{\mu} \mu \alpha \tau о \varsigma ~ E \pi \imath \theta \varepsilon \omega ́ \rho \eta \sigma \eta \varsigma ~ E \rho \gamma \alpha \sigma i ́ \alpha \varsigma » . ~ \Sigma \tau \imath \varsigma ~ 14 ~ O к \tau \omega \beta \rho i ́ o v ~ 1935, ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta ~ \delta \iota \alpha ́ \rho к \varepsilon ı \alpha ~$



 Eбтía 1931 каı то I.K.A. (1934).



 $\alpha v \alpha \varphi \varepsilon ́ \rho о v \tau \alpha \varsigma ~ \mu \varepsilon \rho ı к \alpha ́ ~ \varepsilon i ́ v \alpha l ~ о ~ v o ́ \mu о \varsigma ~ \gamma ı \alpha ~ \tau \eta ~ \chi о \rho \eta ́ \gamma \eta \sigma \eta ~ \alpha \delta \varepsilon ı ஸ ́ v ~ \mu \varepsilon ~ \alpha \pi о \delta о \chi \varepsilon ́ \varsigma ~(1945), ~ \tau о v ~$




 Yлпрєбוஸ́v.

Avtó $\theta \alpha \alpha \lambda \lambda \alpha ́ \xi \varepsilon \iota ~ \sigma \chi \varepsilon \tau \iota \kappa \alpha ́ ~ \pi \rho o ́ \sigma \varphi \alpha \tau \alpha ~ \tau о ~ 1995 . ~ T o ~ v \pi о v \rho \gamma \varepsilon i ́ o ~ o v o \mu \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~$


 $\pi \rho о \sigma \omega \pi \iota \kappa о$.



 Граццатєí $\alpha$.









 ( $\Lambda \eta \xi$ \%opıต́tๆร, 2013).

##  KAI THN EYPЯПAÏKH ENתइH

























 $\sigma \tau \iota \varsigma ~ \imath \delta 1 \omega \tau \iota \kappa \varepsilon ́ \varsigma ~ \varepsilon \pi \tau \chi \varepsilon เ \rho \eta ́ \sigma \varepsilon ı \varsigma$.






 орүаviкळ́v $\theta$ と́бєตv.

Н $\mu \varepsilon i ́ \omega \sigma \eta$ тๆऽ $\alpha \pi \alpha \sigma \chi$ о́ $\eta \sigma \eta \varsigma ~ \sigma \tau о ~ \delta \eta \mu o ́ \sigma ı ~ \sigma v v \delta v \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau о ~ \pi \alpha ́ \gamma \omega \mu \alpha$

 vлоßа́ $\theta \mu \tau \eta \varsigma$.

Oı $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \varepsilon ́ \chi o v v ~ \pi \rho о к \alpha \lambda \varepsilon ́ \sigma \varepsilon ı ~ \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~ \varepsilon ı \sigma о \delta \eta \mu \alpha \tau \iota \kappa \varepsilon ́ \varsigma ~ \alpha \pi ต ́ \lambda \varepsilon ı \varepsilon \varsigma ~ \sigma \tau о v ~$






Oı $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \sigma \tau о ~ \pi \varepsilon \rho \imath є \chi o ́ \mu \varepsilon v o ~ \tau \omega v ~ \varepsilon \rho \gamma \alpha \sigma \iota \alpha \kappa \omega ́ v ~ \sigma \chi \varepsilon ́ \sigma \varepsilon \omega v ~ \sigma \tau о ~ \delta \eta \mu о ́ \sigma ı о ~ \tau о \mu \varepsilon ́ \alpha ~$


 $\chi \alpha \rho \alpha \kappa \tau \eta ์ \rho \alpha$ тоv $\omega \varsigma ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon$ ќov $\pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma ~ \tau о v ~ \alpha \delta и ́ v \alpha \mu о v ~ \pi o ́ \lambda о v ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma ı \alpha к \eta ́ \varsigma ~ \sigma \chi \varepsilon ́ \sigma \eta \varsigma, ~$
 $\pi \lambda \varepsilon \cup \rho \alpha ́ ̧ . ~ O v \sigma ı \alpha \sigma \tau \iota \kappa \alpha ́ ~ \pi \rho о \omega \theta \varepsilon i ́ t \alpha l ~ \varepsilon ́ v \tau o v \alpha ~ \eta ~ \varepsilon v \varepsilon ́ \lambda ı \kappa \tau \eta ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha, ~ \eta ~ \alpha \pi \varepsilon \lambda \varepsilon v \theta \varepsilon ́ \rho \omega \sigma \eta ~ \tau \omega v$

 (INE/ $\Gamma \Sigma E-A \Delta E \Delta Y$, 2012).


 $\sigma \nu \lambda \lambda о \gamma \leftarrow \kappa \dot{v}$ $\sigma \cup \mu \beta \dot{\alpha} \sigma \varepsilon \omega v$.
 тоv $\gamma \varepsilon \vee ı к о и ́ ~ к \alpha \tau \omega ́ \tau \alpha \tau о ч ~ \mu \iota \sigma \theta о v ́ . ~$



- Kатарүвítal о $\theta \varepsilon \sigma \mu o ́ s ~ \tau \eta \varsigma ~ \varepsilon \pi \varepsilon ́ к \tau \alpha \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ s ~ \tau \eta \varsigma ~ \varepsilon Ө v ı к \eta ́ s ~ \gamma \varepsilon v i \kappa \eta ́ s ~$ бод入оүıќs $\sigma ט ́ \mu \beta \alpha \sigma \eta \varsigma$.
 $\sigma \nu \mu \beta \alpha ́ \sigma \varepsilon \omega v$.
 тодvetías.

 $\tau \eta \lambda \eta \xi \xi \eta \eta$ ŋ́ $\tau \nu$ к $\alpha \tau \alpha \gamma \gamma \varepsilon \lambda i ́ \alpha ~ \tau o v \varsigma$.
 $\mu \varepsilon ́ \sigma o v ~ \varepsilon \pi i ́ \lambda u \sigma \eta \varsigma ~ \tau \omega v ~ \sigma \nu \lambda \lambda о \gamma ı к ต ́ v ~ \delta \iota \alpha \varphi о \rho \omega ́ v ~ \sigma \varepsilon ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \alpha \delta i \varepsilon \xi ́ o ́ \delta o v ~ \tau \omega \nu$
 ерүабías.

 $\pi \alpha \rho \varepsilon ́ \mu \beta \alpha \sigma \eta$.











- Meı́vvetar o $\chi \rho o ́ v o s ~ \pi \rho o \varepsilon ı \delta o \pi о i ́ \eta \sigma \eta s ~ \pi \rho ı v ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \alpha \pi o ́ \lambda v \sigma \eta ~ \sigma \varepsilon ~ \beta \alpha \theta \mu o ́ ~ \pi о v ~ \eta ~$

 $\mu \varepsilon \gamma \alpha ́ \lambda \eta \eta$ поӧ̈ $\eta \rho \varepsilon \sigma i ́ \alpha, \gamma \iota \alpha \tau i ́ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \rho v ́ \theta \mu ı \sigma \eta ~ \pi о v ~ \sigma v v \varepsilon \pi \alpha ́ \gamma \varepsilon \tau \alpha ı ~ \tau \eta \nu, ~ \kappa \alpha \tau \alpha ́ ~ \tau о ~ \eta ́ \mu ル \sigma v, ~$ $\mu \varepsilon i ́ \omega \sigma \eta$ тоv кат $\alpha \beta \alpha \lambda \lambda$ о́ $\mu \varepsilon v$ оv лобои́ $\alpha \pi о \zeta \eta \mu i ́ \omega \sigma \eta \varsigma . ~$
 סvvatótๆ $\tau \alpha \tau \omega v$ ع $\lambda \varepsilon v ́ \theta \varepsilon \rho \omega v \alpha v \alpha ́ \mu \eta \prime v \alpha \alpha \pi о \lambda v ́ \sigma \varepsilon \omega v$.













 $\alpha \pi \alpha \sigma \chi$ Ó $\eta \sigma \eta$ (INE/Г $\Sigma \mathrm{EE}-\mathrm{A} \Delta \mathrm{E} \Delta \mathrm{Y}, 2012$ ).


## 2 MHXANIEMOI EYEAIEIAE THE EPГAIAE

## 2.1 תPAPIO ГЕNIKA




## 








## 









 $\tau \eta \nu \eta \mu \varepsilon ́ \rho \alpha, \mu \varepsilon \alpha \nu \alpha ́ \lambda о \gamma \eta \pi \varepsilon \rho ı к о \pi \eta ́ \tau \omega v \alpha \pi о \delta о \chi \omega ́ v$.
 $\varepsilon \pi i ́ \delta \varepsilon เ \xi ̆ \eta ~ \downarrow \alpha \tau \rho ı к ŋ ́ \varsigma ~ \gamma \nu \omega \mu \alpha ́ \tau \varepsilon v \sigma \eta \varsigma$.








### 2.1.3 Nó $\mu \iota \mu$ о $\Omega$ ópıo



 $\omega \rho a ́ p ı \alpha$.









 (Nó $\mu \not \mu о$ תро́pıo, 2015).

### 2.1.4 $\Sigma v \mu \beta \alpha \tau \iota к$ 亿́ $\Omega$ ó́pıo







 то vó $\mu \mu$ но $\mu$ но́ $\tau$ точ.









## 2．1．5 Пєvөи́นєро





 єрүаб⿱㇒́幺小．


 2015）．

## 2．1．6 А $\boldsymbol{\mu} \boldsymbol{\prime} \boldsymbol{\beta} \boldsymbol{\beta} \boldsymbol{\Sigma} \boldsymbol{\Sigma} \boldsymbol{\alpha} \beta$ ótоv

 $\varepsilon \beta \delta о \mu \alpha ́ \delta o \varsigma, ~ \kappa \alpha \tau \alpha ́ ~ \pi \alpha \rho \alpha ́ \beta \alpha \sigma \eta ~ \tau о v ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \pi \varepsilon v \theta \eta ́ \mu \varepsilon \rho \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma, ~ \alpha v \varepsilon \xi ̧ \alpha ́ \rho \tau \eta \tau \alpha ~ \alpha \pi o ́ ~ \tau \iota \varsigma ~$




## 2．1．7 Аноィŋŋ́ Кvрıаки́я



$\eta \mu \varepsilon ́ \rho \alpha ~ \varepsilon \beta \delta о \mu \alpha \delta ı \alpha i ́ \alpha s ~ \alpha v \alpha ́ \pi \alpha v \sigma \eta \varsigma ~ к \alpha ı ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \delta เ \kappa \alpha i ́ \omega \mu \alpha ~ \tau о v ~ \mu ı \sigma \theta \omega \tau о v ́, ~ \alpha \lambda \lambda \alpha ́ ~ к \alpha ı ~$ vлохคє́ $\omega \sigma \eta ~ \tau о \cup ~ \varepsilon \rho \gamma о \delta o ́ \tau \eta$.

 $\omega \rho о \mu і ́ \sigma \theta$ ю.
 ıбХט́ovv $\tau \alpha \varepsilon \xi \xi^{\prime} \varsigma^{4}$ :







 $\tau \eta \varsigma \varepsilon \beta \delta о \mu \alpha ́ \delta \alpha \varsigma$.




 $\alpha v \alpha \pi \lambda \eta \rho \omega \mu \alpha \tau \iota \kappa \eta \mu^{\mu} \rho \alpha \alpha v \alpha ́ \pi \alpha v \sigma \eta \varsigma$.

[^3]
## 2.2 МОРФЕГ EYEAIKTHエ AПAГXOAHEHE (FLEXIBLE WORKING)

### 2.2.1 Мєрьки́ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta$
















 бטvєұó $\mu \varepsilon v \eta$ к $\alpha \iota ~ v \alpha \pi \alpha \rho \varepsilon ́ \chi \varepsilon \tau \alpha \iota ~ \mu i ́ \alpha ~ \varphi о \rho \alpha ́ ~ \tau \eta \nu ~ \eta \mu \varepsilon ́ \rho \alpha . ~$
 $\pi \rho o ́ \sigma \theta \varepsilon \tau \eta ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \pi \varepsilon ́ \rho \alpha ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma v \mu \varphi \omega v \eta \theta \varepsilon i ́ \sigma \alpha ~ \alpha \nu ~ \pi \alpha \rho \alpha \sigma \tau \varepsilon i ́ ~ \alpha \nu \alpha ́ \gamma \kappa \eta ~ \kappa \alpha ı ~ \alpha \nu ~ \varepsilon i ́ v \alpha ı ~ \sigma \varepsilon ~ \theta \varepsilon ́ \sigma \eta ~$
 $\alpha \rho \vee \eta \theta \varepsilon i ́ ~ \tau \eta v \pi \alpha \rho о \chi \eta ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \pi \varepsilon ́ \rho \alpha ~ \tau \eta \varsigma ~ \sigma v \mu \varphi \omega v \eta \mu \varepsilon ́ v \eta \varsigma, ~ o ́ \tau \alpha \nu ~ \alpha v \tau \eta ́ ~ \eta ~ \pi \rho o ́ \sigma \theta \varepsilon \tau \eta ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~$
 А $\pi \alpha \sigma \chi$ о́ $\left.\left.\eta{ }^{\eta}\right\rceil \varsigma, 2015\right)$.

## 






 тоטрıбтוкє́ऽ $\chi \omega \rho \rho \varsigma \varsigma$ о́ $\pi \omega \varsigma ~ \eta ~ E \lambda \lambda \alpha ́ \delta \alpha$.





Mı $\theta \dot{\varepsilon} \sigma \eta ~ \pi \rho о \sigma \omega \rho ı v \eta ́ \varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ \pi о \lambda \lambda \alpha ́ ~ о \varphi \varepsilon ́ \lambda \eta, ~ \varepsilon v \omega ́ ~ \pi о \lambda \lambda о i ́ ~ \alpha ́ v \theta \rho \omega \pi о \imath ~$







 $\varepsilon \mu \pi \varepsilon \iota \rho i ́ \alpha \varsigma, ~ \varepsilon \vee ต ́ ~ \pi \alpha \rho \alpha ́ \lambda \lambda \lambda \eta \lambda \alpha \pi \rho о \sigma \varphi \varepsilon ́ \rho \varepsilon ı ~ \kappa \alpha ı ~ \varepsilon v \varepsilon \lambda ı \xi i ́ \alpha . ~$

Eíval $\alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau \eta ~ \sigma \tau \eta \nu ~ \alpha \pi o ́ \kappa \tau \eta \sigma \eta ~ \varepsilon \rho \gamma \alpha \sigma ı \alpha к \eta ́ s ~ \varepsilon \mu \pi \varepsilon เ \rho i ́ \alpha \varsigma ~ \sigma \tau о v ~ \tau о \mu \varepsilon ́ \alpha ~ \pi о v ~$



 $\gamma \nu \omega \rho \mu \iota \omega$.




 ठıóбтŋ $\mu \alpha$.









 $\left.\eta \pi \rho о \sigma \omega \rho \iota v \eta{ }^{\prime} \alpha \pi \alpha \sigma \chi \circ ́ \lambda \eta \sigma \eta, 2015\right)$.

### 2.2.3 $\Sigma v ์ \mu \beta \alpha \sigma \eta$ Opıб $\mu$ évov Xpóvov ( $\Sigma$ OX)


 $\gamma 1 \alpha \mu 1 \alpha$ бणүкєкрчє́vๆ $\pi \varepsilon \rho i ́ o \delta o . ~ Н ~ \sigma v v \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \lambda v ́ \varepsilon \tau \alpha ı ~ o ́ \tau \alpha v ~ \eta ~ \eta \mu \varepsilon \rho о \mu \eta v i ́ \alpha ~ \pi \alpha \rho \varepsilon ́ \lambda \theta \varepsilon ı ~ \chi \omega \rho i ́ s ~$




 ( $\Sigma \mathrm{AX}$ ) $\varepsilon \alpha ́ v ~ \sigma u \mu \varphi \omega v \eta \theta \varepsilon i ́ ~ \rho \eta \tau \alpha ́ ~ \eta ́ ~ \sigma \omega \pi \eta \rho \alpha ́ ~ \eta ~ \sigma v v \varepsilon ́ \chi ા \sigma \eta ́ ~ \tau \eta ร . ~ E \alpha ́ v ~ \pi \rho ı v ~ \alpha \pi o ́ ~ \tau \eta ~ \lambda \eta \xi \xi \eta ~ \tau \eta ร ~$



### 2.2.4 Елофикŋ́ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta$







 кади́лтоvтаı $\alpha \pi$ о́ то $\sigma \tau \alpha \theta \varepsilon \rho \omega ́ \varsigma ~ \alpha \pi \alpha \sigma \chi о \lambda о$ $\mu \varepsilon v o ~ \pi \rho о \sigma \omega \pi ı \kappa o ́ . ~$










### 2.2.5 $\Delta \alpha v \varepsilon ı \sigma \mu o ́ \varsigma ~ \varepsilon \rho \gamma \alpha \zeta о \mu \varepsilon ́ v \omega v$









 $\pi \alpha \rho \alpha \chi \omega \rho о$ -







### 2.2.6 А $\boldsymbol{\tau} \alpha \sigma \chi$ о́ $\lambda \eta \sigma \eta \pi \rho о \sigma \omega \pi \iota к о v ์ ~ \varepsilon \rho \gamma о \lambda \alpha \beta \iota к \eta ์ \varsigma ~ \varepsilon \pi \iota \chi \varepsilon i ́ \rho \eta \sigma \eta \varsigma$









##  $\varepsilon \pi \iota \chi \varepsilon \iota \rho \eta{ }^{\prime} \sigma \varepsilon \omega v$



 $\mu \varepsilon ́ \lambda \eta ~ \tau о v ~ \delta ı \kappa \tau v ́ o v, ~ \alpha v \alpha ́ \lambda о \gamma \alpha ~ \mu \varepsilon ~ \tau ı \zeta ~ \alpha v \alpha ́ \gamma \kappa \varepsilon \varsigma ~ \kappa \alpha \theta \varepsilon v o ́ \varsigma ~ \alpha \pi o ́ ~ \alpha v \tau \alpha ́ . ~ O ~ \varepsilon \rho \gamma \alpha \zeta ̆ o ́ \mu \varepsilon v o \varsigma ~ \delta \varepsilon v ~$




 ( $\Sigma \tau \alpha \mu \alpha ́ \tau \eta ~ \& ~ \Sigma v \rho ı o ́ \pi o v \lambda о \varsigma, 2015)$.

### 2.2.8 $\Delta \mathrm{t} \varepsilon v \theta \dot{\varepsilon} \tau \eta \sigma \eta$ тov $\chi \rho$ óvov єрү $\alpha$ ó $\alpha \varsigma$

 $\sigma \alpha \rho \alpha ́ v \tau \alpha(40) ~ ஸ ́ \rho \varepsilon \varsigma ~ \varepsilon \beta \delta о \mu \alpha \delta ı \alpha i ́ \omega \varsigma ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \pi \varepsilon \tau \alpha ı ~(\Sigma \kappa \alpha v \delta \alpha ́ \lambda \eta \varsigma, ~ 2015): ~$










 $\alpha \pi$ о́ tov $\sigma \cup v o \lambda ı к o ́ ~ \chi \rho o ́ v o ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ \varepsilon v \tau o ́ \varsigma ~ \varepsilon v o ́ s ~(1) ~ \eta \mu \varepsilon \rho о \lambda о \gamma ı \alpha к о и ́ ~ \varepsilon ́ \tau o v \varsigma, ~$ кат $\alpha v \varepsilon ́ \mu о v \tau \alpha \imath ~ \mu \varepsilon ~ \alpha v \xi ŋ \eta \mu \varepsilon ́ v o ~ \alpha \rho ı \theta \mu o ́ ~ \omega \rho ต ́ v ~ \sigma \varepsilon ~ о \rho ı \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \chi \rho о v ı к \varepsilon ́ \varsigma ~ \pi \varepsilon \rho ı o ́ \delta o v \varsigma, ~ \pi o v ~ \delta \varepsilon v ~$


 $\varepsilon \varphi \alpha \rho \mu o ́ \zeta о \nu \tau \alpha \iota ~ к \alpha ะ:$

* $\sigma \tau \iota \varsigma ~ \varepsilon \pi о \chi 1 \alpha \kappa \varepsilon ́ \varsigma ~ \varepsilon \pi \imath \chi \varepsilon ı \rho \eta ́ \sigma \varepsilon ı \varsigma ~ \kappa \alpha ı ~$









b) Oı $\alpha \tau о \mu \imath к о i ́ ~ \lambda о \gamma \alpha \rho ı \alpha \sigma \mu о i ́ ~ \chi \rho o ́ v o v ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma: ~$




[^4] каı $\mu \varepsilon \iota \omega \mu \varepsilon ́ v o v ~ \omega \rho \alpha \rho i ́ o v, ~ o ́ \pi о v ~ \delta \varepsilon v ~ \pi \rho о \beta \lambda \varepsilon ́ \pi \varepsilon \tau \alpha ı ~ \alpha v \xi о \mu \varepsilon ́ ́ \omega \sigma \eta ~ \tau \omega v ~ \alpha \pi о \delta о \chi ต ́ v ~$


 $\alpha \pi \alpha \sigma \chi$ о́ $\eta \sigma \eta$ тоv $\pi \rho о \sigma \omega \pi ı \kappa о v ́, ~ \eta ́ ~ / ~ к \alpha ı ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta ́ ~ \tau о v ~ \tau \alpha ~ \Sigma \alpha \beta \beta \alpha \tau о к о ́ \rho ı \alpha к \alpha, ~$







 врүа́ఢоขтаı 07:00-15:00, а́ $\lambda \lambda$ оı 08:00 - 16:00, а́ $\lambda \lambda$ оı 09:00 - 17:00, кок.).




g. $\Sigma v \mu \pi \imath \varepsilon \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ ஸ ́ \rho \varepsilon \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ̧: ~ \tau о ~ v о ́ \mu \mu о ~ \varepsilon \beta \delta о \mu \alpha \delta ı \alpha ́ o ~ \omega \rho \alpha ́ р ı о ~(\pi . \chi . ~ 40 ~ \omega ́ \rho \varepsilon \varsigma ~$










 «ठı $\alpha \delta \rho о ́ \mu о v » ~ \alpha v \tau o v ́ ~(\alpha \pi o ́ ~ 30-40 ~ \omega ́ \rho \varepsilon \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma) . ~$

## 






 2015).

## 







### 2.2.11Ерү $\alpha \sigma i ́ \alpha \mu \varepsilon$ то коц $\mu \alpha ́ \tau \iota-\varphi \alpha \sigma o ́ v-\eta ́ ~ v \pi \varepsilon \rho \gamma о \lambda \alpha \beta i ́ \alpha$




 $\varepsilon \pi \tau \chi$ вí $\eta \sigma \eta$ (Аßрацíкоv, 2015).

### 2.2.12Tท入єрү $\alpha \sigma i ́ \alpha$






 $\varepsilon \pi \iota \kappa о \imath \omega v i o ́ v ~(A \beta \rho \alpha \mu i ́ \kappa o v, ~ 2015) . ~$.

### 2.2.13 $\Delta \mathrm{l} \alpha \theta \varepsilon \sigma \iota \mu o ́ \tau \eta \tau \alpha$ E $\rho \gamma \alpha \sigma i ́ \alpha \varsigma$ (on call work)





 $\alpha v \xi ̨ \eta \mu \varepsilon ́ v \varepsilon \varsigma ~ \alpha v \alpha ́ \gamma \kappa \varepsilon \varsigma ~ \kappa \alpha l ~ \sigma \tau \alpha \mu \alpha \tau о и ́ v ~ v \alpha ~ \varepsilon \rho \gamma \alpha ́ \zeta о v \tau \alpha ı ~ к \alpha ı ~ v \alpha ~ \pi \lambda \eta \rho ต ́ v o v \tau \alpha l ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~$
 (Аßраці́коv, 2015).

## 



 $\alpha \pi$ оибía $\varepsilon v o ́ \varsigma ~ \varepsilon \rho \gamma \alpha \zeta ̧ o ́ \mu \varepsilon v o v ~ \gamma l \alpha ~ \sigma v \mu \mu \varepsilon \tau о \chi \eta ́ ~ \sigma \varepsilon ~ \pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha ~ к \alpha \tau \alpha ́ \rho \tau ı \sigma \eta \varsigma, ~ \mu \varepsilon ~ \tau \eta v ~$


 (А Ароці́коv, 2015).

##  $\Sigma \nu \nu \tau \alpha \xi ı \delta o ́ \tau \eta \sigma \eta)$










 $\pi \alpha \rho \alpha \gamma \omega \gamma ю к о ́ \tau \eta \tau \alpha$ тŋऽ єрүабі́аऽ (Аßраці́коv, 2015).

### 2.2.16Evé $\downarrow \iota \kappa \tau \alpha \varepsilon \rho \gamma \alpha ́ \sigma \iota \mu \alpha \chi \rho o ́ v ı \alpha$







## 













 $\sigma \tau \eta \nu \mathrm{E} \lambda \lambda \alpha \dot{\delta} \delta \alpha(\mathrm{A} \beta \rho \alpha \mu i ́ \kappa о v, 2015)$.

## 3 上YNDIKAAIETIKO KINHMA

## 3.1 上YNDIKAAIธTIKO KINHMA $\Sigma$ THN EYPSПH KAI $\Sigma$ THN $\mathbf{E} \boldsymbol{\Lambda} \mathbf{\Lambda} \mathbf{A} \mathbf{\Delta} \mathbf{A}$



 $\alpha 1 \oplus ́ v \alpha \mu \varepsilon ́ \chi \rho ı ~ \sigma \eta ́ \mu \varepsilon \rho \alpha$.





 $\kappa \alpha ı ~ \varepsilon \rho \mu \eta \nu \varepsilon i ́ \alpha \varsigma ~ \tau \omega v ~ \varepsilon \rho \gamma \alpha \sigma ı \kappa ळ ́ v ~ \sigma \chi \varepsilon ́ \sigma \varepsilon \varrho \nu ~ \alpha \pi o ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda \alpha ~ \tau \mu \eta ́ \mu \alpha \tau \alpha ~ \tau о v ~ \pi \lambda \eta \theta v \sigma \mu о v ́ ~ \tau \omega v$ عขрюлаїкต́v $\chi \omega \rho \dot{v}$.

Oı $\alpha \lambda \lambda \varepsilon \varsigma ~ \delta v ́ o ~ \theta \varepsilon \omega \rho i ́ \varepsilon \varsigma ~ \alpha v \alpha \pi \tau v ́ \chi \theta \eta \kappa \alpha \nu ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \tau о ~ \sigma ט v \delta ı к \alpha \lambda ı \sigma \tau ו к o ́ ~ к i ́ v \eta \mu \alpha ~ \tau о v ~$



 кıvŋ́ $\mu \alpha \tau о \varsigma ~ \alpha к о ́ \mu \alpha ~ к \alpha ı ~ \sigma \eta ́ \mu \varepsilon \rho \alpha . ~$
 $\chi \alpha \rho \alpha \kappa \tau \eta \rho i ́ \zeta \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau о v ~ \pi \lambda о \cup \rho \alpha \lambda ı \sigma \mu o ́ ~ \sigma \tau о ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı к o ́ ~ \tau \eta \varsigma . ~ A v \tau o ́ \varsigma ~ \varepsilon i ́ v \alpha l ~ к \alpha l ~ о ~ \lambda o ́ \gamma o \varsigma ~ \pi о v ~$









 бкغ́чๆ૬: то $\alpha \gamma \gamma \lambda$ ıко́ каı то $\alpha \mu \varepsilon \rho ı к \alpha ́ v ı к о . ~$





Tо $\alpha \mu \varepsilon \rho ı к \alpha ́ v ı к о ~ \rho \varepsilon ט ́ \mu \alpha ~ \alpha \pi o ́ ~ \tau \eta v ~ \alpha ́ \lambda \lambda \eta ~ \tau о v i ́ ̧ \varepsilon ı ~ \tau \eta ~ \sigma \eta \mu \alpha \sigma i ́ \alpha ~ \pi о v ~ \varepsilon ́ \chi \varepsilon ı ~ \eta ~ \gamma \vee ต ́ \mu \eta ~ к \alpha ı ~$



 $\theta \varepsilon \sigma \mu о \pi о і ́ \eta \sigma \eta ~ \tau \eta \varsigma ~ \sigma ט ́ \gamma к \rho о v \sigma \eta \varsigma ~ \sigma \tau о ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı к о ́ ~ \tau \omega v ~ \varepsilon \pi \iota \chi \varepsilon \iota \rho \eta ́ \sigma \varepsilon \omega v$.






 $\varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \mu \varepsilon ́ \sigma \omega ~ \tau \omega v ~ \sigma u v \delta ı \kappa \alpha ́ \tau \omega v ~ \tau \eta \varsigma$.
 $\tau \omega v \delta 1 \alpha \varphi o ́ \rho \omega v$ о $\mu \alpha ́ \delta \omega v \pi i ́ \varepsilon \sigma \eta ร$.
c) To кра́то̧ $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau о \vee ~ \alpha \mu \varepsilon \rho o ́ \lambda \eta \pi \tau \tau о ~ \varphi \rho о \cup \rho o ́ ~ \alpha v \tau ஸ ́ v ~ \tau \omega v ~ \sigma \cup \mu \varphi \varepsilon \rho o ́ v \tau \omega v . ~$





















 є $\rho \gamma \alpha \tau \iota \kappa \alpha ́ ~ \sigma \cup v \delta ı \kappa \alpha ́ \tau \alpha$.

Н орүóvตбך $\sigma \varepsilon ~ \sigma u v \delta ı \kappa \alpha ́ \tau о ~ \kappa \alpha \tau \alpha ́ ~ \tau о \nu ~ ' E v \gamma \kappa \varepsilon \lambda \varsigma, ~ \varepsilon i ́ v \alpha ı ~ \tau о ~ \pi \rho ต ́ \tau о ~ \beta \eta ́ \mu \alpha ~ \pi о v ~ \theta \alpha ~$










[^5]






 $\kappa \alpha \pi \imath \tau \alpha \lambda \sigma \mu \circ v ์ . ~ Н ~ \tau \alpha \xi ı к ŋ ́ ~ \sigma v v \varepsilon i ́ \delta \eta \sigma \eta ~ \pi о v ~ \pi \rho о \omega \theta о v ́ v ~ \tau \alpha ~ \sigma \omega \mu \alpha \tau \varepsilon i ́ \alpha ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~ \mu o ́ v o ~$ $\pi \rho \circ \varsigma \tau \eta \nu \kappa \alpha \tau \varepsilon v ์ \theta v v \sigma \eta \tau \omega v \sigma v \nu \tau \varepsilon \chi v i \alpha \kappa \omega ́ v \mu \varepsilon \tau \alpha \rho \rho v \theta \mu i ́ \sigma \varepsilon \omega v$.

 $\sigma \pi \alpha \tau \alpha \lambda о$ v́v $\mu \varepsilon \gamma \alpha ́ \lambda o \quad \mu \varepsilon ́ \rho o \varsigma ~ \tau \eta \varsigma ~ \eta \mu \varepsilon ́ \rho \alpha \varsigma ~ \tau o v s ~ \sigma \tau \eta ~ \mu ו \sigma \theta \omega \tau \eta ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \theta \alpha ~ \gamma i ́ v o v v ~$

 (Kãборíßa૬, 2002).









 $\theta \alpha$ бı $\delta$ áбкоиv то бобı $\alpha \lambda \iota \sigma \mu$ о́.








 бто котvoßои́ 1 ı.

 $\varepsilon \mu \pi \varepsilon \imath \rho i ́ \varepsilon \varsigma ~ \sigma \tau о \cup \varsigma ~ \alpha \gamma ต ́ v \varepsilon \varsigma ~ \varepsilon v \omega ́ ~ \theta \alpha ~ \kappa \alpha \tau \varepsilon ̇ \lambda \eta \gamma \varepsilon ~ v \alpha ~ \gamma i ́ v \varepsilon ı ~ \sigma о \sigma ı \alpha \lambda ı \sigma \tau \eta ́ \varsigma . ~ \Theta \varepsilon \omega \rho о v ́ \sigma \varepsilon ~ \pi \omega \varsigma ~$


 $\alpha \pi o ́ ~ \tau o ~ v \alpha ~ \varepsilon v \tau \alpha \chi \theta o v ́ v ~ \sigma \tau \eta ~ \delta ı \varepsilon \theta v ฑ ́$.


 $\varepsilon \pi \alpha v \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \mu \varepsilon ́ \chi \rho ı ~ \tau о ~ \sigma о \sigma ı \alpha \lambda 1 \sigma \mu о ́ ~ \chi \omega \rho i ́ \varsigma ~ \tau \eta \nu ~ \alpha v \alpha ́ \gamma к \eta ~ \pi \rho о \sigma \varphi v \gamma \eta ́ s ~ к \alpha ı ~ v ́ \pi \alpha \rho \xi ̧ \eta \varsigma ~ \varepsilon v o ́ \varsigma ~$ $\varepsilon v \delta ı \alpha ́ \mu \varepsilon \sigma о v$ бтоv кратıко́ $\mu \eta \chi \alpha v 1 \sigma \mu$. Гı $\alpha$ тоv $\alpha v \alpha \rho \chi о \sigma v v \delta ı к \alpha \lambda ı \sigma \mu o ́ ~ \tau \alpha ~ \sigma v v \delta ı к \alpha \lambda ı \sigma \tau ı к \alpha ́ ~$ $\sigma \omega \mu \alpha \tau \varepsilon i ́ \alpha ~ \varepsilon i ́ v \alpha ı ~ \pi \rho о \pi о \mu \pi п ́ ~ \tau \eta \varsigma ~ \mu \varepsilon \lambda \lambda о \nu \tau \iota \kappa \eta ́ \varsigma ~ к о \imath v ต v i ́ \alpha \varsigma . ~$



 $\sigma v v \delta ı \kappa \alpha ́ \tau \alpha ~ \tau о v ~ \varepsilon \pi \alpha v \alpha \sigma \tau \alpha \tau ı к о v ́ ~ \sigma v v \delta ı к \alpha \lambda ı \sigma \mu о v ́ ~ \sigma \varepsilon ~ o ́ \lambda о ~ \tau o v ~ к o ́ \sigma \mu о . ~$






### 3.1.1 H Iбторí $\alpha$ тоv єр $\gamma \alpha \tau \iota \kappa о v ́ ~ к ı v \eta ́ \mu \alpha \tau о \varsigma ~ \sigma \tau \eta v ~ E \lambda \lambda \alpha ́ \delta \alpha ~$




 $\alpha \pi o ́ ~ \chi \rho o ́ v i \alpha ~ \mu \varepsilon \tau \alpha ́ ~ \tau \eta ~ P \omega \sigma ı к ŋ ́ ~ \varepsilon \pi \alpha v \alpha ́ \sigma \tau \alpha \sigma \eta ~ \gamma i ́ v \varepsilon \tau \alpha l ~ \sigma \chi \varepsilon \delta o ́ v ~ \tau \eta v ~ i ́ \delta i \alpha ~ \sigma \tau \imath \gamma \mu \eta ́ ~ \mu \varepsilon ~ \tau \eta v ~ i ́ \delta \rho v \sigma \eta ~$








 ко $\mu \alpha \tau \iota к о л о и ́ \eta \sigma \eta ~ \tau о v ~ \sigma v v \delta ı к \alpha \lambda ı \sigma \mu о v ́ . ~ T o ~ \gamma \varepsilon \gamma о v o ́ s ~ \alpha v \tau o ́ ~ \varepsilon к \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \sigma v v \varepsilon \chi \eta ́ ~$









 $\kappa \alpha ı ~ v \alpha ~ \alpha \pi о \pi \rho о \sigma \alpha v \alpha \tau о \lambda i ́ \sigma o v v ~ \tau \eta \nu ~ о \mu о \sigma \pi о v \delta i ́ \alpha ~ v \alpha ~ \alpha \pi о к \tau \eta ́ \sigma \varepsilon ı ~ \tau \alpha \xi ı к \eta ́ ~ \sigma v v \varepsilon i ́ \delta \eta \sigma \eta ~ к \alpha ı$

 бvvouоблоvঠías (Кочкочдદ́s, 2007):



 $\pi 0 v \varepsilon \xi \dot{\varepsilon} \lambda \varepsilon \xi \alpha \nu$ ol $\varepsilon \kappa \pi \rho o ́ \sigma \omega \pi 01 \tau \omega v \alpha \rho ı \sigma \tau \varepsilon \rho \omega ́ v \pi \alpha \rho \alpha \tau \alpha ́ \xi \varepsilon \omega v$.







 $\kappa \alpha \tau \alpha \sigma \tau о \lambda \eta$, $\delta ı \alpha \gamma \rho \alpha \varphi \varepsilon ́ \varsigma ~ \sigma \omega \mu \alpha \tau \varepsilon i ́ \omega v ~ \mu \varepsilon ~ \pi о \lambda ı \tau \kappa \kappa ́ \varsigma ~ \sigma к о \pi ч \mu о ́ \tau \eta \tau \varepsilon \varsigma ~ \kappa \lambda \pi$.
 $\chi \omega ́ \rho \alpha$ бтıร 22/12/1983. Kaı $\pi \alpha ́ \lambda ı ~ o ́ \mu \omega \varsigma ~ \sigma \tau о ~ \varepsilon \pi o ́ \mu \varepsilon v o ~ \sigma v v \varepsilon ́ \delta \rho ı о ~ \eta ~ к \nu ß \varepsilon ́ \rho v \eta \sigma \eta ~ \tau о v ~$


 $\sigma v v \delta ı \kappa \alpha \lambda \iota \tau \iota \kappa \omega ́ v ~ \pi \alpha \rho \alpha \tau \alpha ́ \xi \varepsilon \omega v$. 'E $\tau \sigma \iota ~ \sigma \tau \eta \nu \pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa o ́ \tau \eta \tau \alpha$ ŋ́ $\tau \alpha \nu \eta \pi \rho \omega ́ \tau \eta ~ \varphi о \rho \alpha ́ ~ \sigma \tau \eta \nu$







 $\alpha \rho ı \tau \varepsilon \rho \alpha ́ \varsigma ~ \sigma \tau \eta v ~ к \cup ß \varepsilon ́ \rho v \eta \sigma \eta, \eta$ олоі́а $\sigma \varepsilon$ $\sigma v v \delta v \alpha \sigma \mu o ́ ~ \mu \varepsilon ~ \tau \eta \nu ~ \pi \lambda \eta ́ \rho \eta ~ \mu \varepsilon \tau \alpha ́ \beta \alpha \sigma \eta ~ \tau о v ~$











 $\alpha \vee \tau i ́ \sigma \tau о \not \chi \eta \varsigma ~ \rho \eta \tau о \rho ı к и ̆ \varsigma$.
 $\delta 1 \alpha ́ \theta \varepsilon \sigma \eta$ ó $\lambda \omega v \alpha v \varepsilon \xi \alpha ı \varepsilon ́ \tau \omega \varsigma ~ \tau \omega v ~ \pi \alpha \rho \alpha \tau \alpha ́ \xi ̌ \varepsilon \omega v ~ \tau \eta \varsigma ~ Г . \Sigma . E . E ., ~ દ ́ \chi \varepsilon ı ~ \tau ı \varsigma ~ \rho i ́ ̧ ̧ \varsigma ~ \tau \eta \varsigma ~ \sigma \varepsilon ~ \mu \mu \alpha$






 $\alpha v \tau \eta$ тך $\sigma u v \varepsilon \delta \rho i ́ \alpha \sigma \eta ~ к р i ́ \theta \eta \kappa \varepsilon ~ \kappa \alpha ı ~ \eta ~ \sigma \tau \alpha ́ \sigma \eta ~ \tau \omega v ~ \pi \alpha \rho \alpha \tau \alpha ́ \xi \varepsilon \varepsilon \omega v ~ \alpha \pi \varepsilon ́ v \alpha v \tau ı ~ \sigma \tau о ~ \lambda \varepsilon \gamma о ́ \mu \varepsilon v o ~$



 $\sigma \cup \gamma \kappa \varepsilon \nu \tau \rho \omega ́ \sigma \varepsilon \iota \varsigma ~ \sigma \varepsilon \delta ı \alpha \varphi о \rho \varepsilon \tau \iota \kappa o ́ ~ \tau о ́ \pi о ~ к \alpha \tau \alpha ́ ~ \tau ı \varsigma ~ \delta ı \alpha \delta \eta \lambda \omega ́ \sigma \varepsilon ı \varsigma ~ \tau \eta \varsigma ~ П \rho \omega \tau о \mu \alpha \gamma เ \alpha ́ \varsigma . ~ П \alpha \rho o ́ \lambda \alpha ~$ $\alpha v \tau \alpha ́ \alpha 0 v \varepsilon ́ \chi 1 \sigma \varepsilon v \alpha \mu \varepsilon \tau \alpha ́ \sigma \chi \varepsilon \imath ~ \kappa \alpha v o v ı \kappa \alpha ́ ~ \sigma \tau \eta ~ \delta ı i ́ \kappa \eta \sigma \eta ~ \kappa \alpha ı ~ \sigma \tau \alpha ~ о ́ \rho \gamma \alpha v \alpha ~ \tau \eta \varsigma ~ Г . \Sigma . E . E . ~$
'Eva $\alpha \pi o ́ ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \tau \omega v ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \delta ı \alpha \varphi о \rho о \pi о и ́ \sigma \varepsilon є \omega v ~ \tau \eta \varsigma ~ E \Sigma A K ~ \eta ́ \tau \alpha v ~$






Oı $\sigma v v \delta ı \kappa \alpha \lambda ı \sigma \tau \iota \kappa o i ́ ~ \alpha \gamma \omega ́ v \varepsilon \varsigma ~ \tau \omega v ~ \delta ı \alpha \varphi o ́ \rho \omega v ~ к \lambda \alpha ́ \delta \omega v ~ \varepsilon \rho \gamma \alpha \zeta ু о \mu \varepsilon ́ v \omega v ~ \alpha \pi o ́ ~ \tau о ~ 1989 ~$



 олоíєऽ $\sigma \nu \mu \mu \varepsilon \tau \varepsilon ́ \chi \varepsilon \iota ~ \kappa \alpha ı \eta ~ П А \Sigma К Е, ~ \mu \varepsilon ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \varepsilon ~ \alpha v \tau о ́ ~ \tau о ~ к \lambda i ́ \mu \alpha ~ \eta ~ к о ß \varepsilon ́ \rho \nu \eta \sigma \eta ~ v \alpha$ $\alpha \pi о \sigma ט ́ \rho \varepsilon \iota ~ \tau о ~ v о \mu о \sigma \chi \varepsilon ́ \delta ı o ~(I N E / Г \Sigma E E-A \Delta E \Delta Y, ~ 2012) . ~$.

### 3.2 METABOAEE TOY EYNAIKAAIETIKOY KINHMATOE AПO THN IAPYロH T $\Omega$ N ПP $\Omega$ T $\Omega$ I $\Sigma \Omega M A T I \Omega N$




 $\pi \rho \circ \varsigma ~ \tau о ~ к ı \nu \eta \mu \alpha \tau \iota \kappa o ́ ~ \sigma v v \delta ı \kappa \alpha \lambda ı \sigma \mu o ́ ~ \delta \varepsilon v ~ \varepsilon ́ \chi \varepsilon ı ~ \gamma i ́ v \varepsilon ı ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \sigma u v \delta ı к \alpha \lambda ı \sigma \tau ı к \varepsilon ́ \varsigma ~ \eta \gamma \varepsilon \sigma i ́ \varepsilon \varsigma ~ \pi о v ~$ $\kappa \alpha ́ \theta \varepsilon ~ \sigma \kappa \varepsilon ́ \psi \eta ~ \pi \varepsilon \rho i ́ ~ \sigma u v \alpha ı v \varepsilon \tau ı \kappa ळ ́ v ~ \delta ı \varepsilon \kappa \delta ı \kappa \eta ́ \sigma \varepsilon \omega v-\delta ı \alpha \pi \rho \alpha \gamma \mu \alpha \tau \varepsilon v ́ \sigma \varepsilon \omega v$ ह́ $\chi \varepsilon \imath ~ \mu \pi \lambda о к \alpha \rho ı \sigma \tau \varepsilon i ́ ~ \sigma \tau \eta \nu$
 $\varepsilon v \varepsilon ́ \rho \gamma \varepsilon \iota \varepsilon \varsigma ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \tau о ~ \sigma v v \delta ı к \alpha \lambda ı \sigma \tau \iota к o ́ ~ к i ́ v \eta \mu \alpha ~ \alpha \lambda \lambda \alpha ́ ~ \varepsilon к \tau o ́ s ~ Г \Sigma E E-A \Delta E \Delta Y ~ \gamma ı \alpha ~ \tau \eta v$ $\pi \alpha \rho \alpha ́ \kappa \alpha \mu \psi \eta$ к $\alpha \iota ~ \tau о ~ \xi ६ \pi \varepsilon ́ \rho \alpha \sigma \mu \alpha ~ \tau \eta \varsigma ~ к \rho i ́ \sigma \eta \varsigma ~ \tau о v . ~$
 $\pi \rho о ́ \tau \alpha \sigma \eta \varsigma ~ \sigma \tau \eta \nu ~ \pi \rho о \eta \gamma \circ v ́ \mu \varepsilon v \eta ~ \pi \alpha \rho \alpha ́ \gamma \rho \alpha \varphi \rho, ~ \tau \alpha ~ 10 ~ \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha ~ \chi \rho o ́ v i \alpha ~ \pi \varepsilon \rho i ́ \pi o v ~ \varepsilon ́ \chi о v v$
 $\sigma \tau \eta \nu$ Г.E.E.E ( $\Delta \alpha \sigma \kappa \alpha \lambda о \pi о v ́ \lambda о v ~ \& ~ П о \lambda i ́ \tau \eta, ~ 2010) . ~$

 $\chi$ б́pov. T $\alpha \sigma \omega \mu \alpha \tau \varepsilon i ́ \alpha ~ \alpha v \tau \alpha ́ ~ \sigma \varepsilon ~ \alpha v \tau i ́ \theta \varepsilon \sigma \eta ~ \mu \varepsilon ~ \tau о ~ \varepsilon i ́ \delta o s ~ \tau o v ~ \sigma v v \delta ı \kappa \alpha \lambda ı \sigma \mu о v ́ ~ \tau \omega v ~ Г \Sigma E E-~$








 $\mu \varepsilon \lambda \omega \dot{\nu} \tau \circ v^{8}$.





## 














 $\tau \varepsilon ́ \lambda о \varsigma ~ \tau \eta \varsigma ~ к о \imath v \omega v i ́ \alpha \varsigma ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~$

Н $\delta ı \rho \kappa \eta ́ \varsigma, ~ \delta \iota \alpha \chi \rho о v ı к \eta ́ ~ к \alpha ı ~ \sigma v v \varepsilon \chi о ́ \mu \varepsilon v \eta ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon ı \alpha ~ v \pi о \beta \alpha ́ \theta \mu ı \sigma \eta \varsigma ~ \tau \eta \varsigma ~$


[^6] ерүабía.








 ( $\Delta \alpha \sigma \kappa \alpha \lambda о \pi о v ́ \lambda о v ~ \& ~ П о \lambda i ́ \tau \eta, ~ 2010) . ~$



 $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \sigma \tau о ́ \chi \omega v ~ \tau о v ~(К \alpha \rho \alpha к ı \nu \lambda \lambda \alpha ́ \varphi \eta, ~ 2012): ~$



















 єрүабíaऽ ๆ́ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta \varsigma$.














 $\varepsilon \nu \omega \tau \iota \kappa \varepsilon ́ \varsigma ~ \kappa \alpha ı ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa \varepsilon ́ \varsigma ~ \mu о \rho \varphi \varepsilon ́ \varsigma ~ \kappa \alpha ı ~ \mu \varepsilon \theta o ́ \delta o v ̧ ~ \delta \rho \alpha ́ \sigma \eta \varsigma . ~$




Eıঠıко́тєра то $\sigma \cup v \delta ı к \alpha \lambda ı \tau \iota к o ́ ~ к i ́ v \eta \mu \alpha, ~ \mu \pi \rho о \sigma \tau \alpha ́ ~ \sigma \tau \eta \nu ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ \pi о v ~$
 $\mu о ю р \lambda \alpha \tau \rho \iota к \alpha ́ ~ \tau \eta ~ v \varepsilon ́ \alpha ~ \alpha v \tau \eta ́ ~ \delta ı \alpha \mu о \rho \varphi о и ́ \mu \varepsilon v \eta ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ к \alpha ı ~ v \alpha ~ v \pi о \tau \alpha \gamma \varepsilon i ́ ~ о \lambda о к \lambda \eta \rho ю \tau \iota к \alpha ́ ~$
 vદ́ous т $о$ о́лоия $\delta є \varepsilon \kappa \delta i ́ к \eta \sigma \eta \varsigma . ~$





 $\varepsilon \rho \gamma \alpha \zeta ু о \mu \varepsilon ́ v \omega v$.


 $\kappa \varepsilon \rho \delta i ́ \sigma \varepsilon \iota ~ \sigma \tau \alpha ~ \sigma \eta \mu \varepsilon i ́ \alpha ~(\Lambda \varepsilon о \vee \tau \alpha ́ p \eta \varsigma, ~ 2010): ~$


 $\mu о \rho \varphi \varepsilon ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \sigma \tau \iota \varsigma ~ о \pi о i ́ \varepsilon \varsigma ~ \mu \varepsilon ́ \chi \rho ı ~ \pi \rho ı v ~ к \alpha ́ \pi о ı \alpha ~ \chi \rho o ́ v ı \alpha ~ \tau о ~ \sigma ט v \delta ı к \alpha \lambda ı \sigma \tau ı к о ́ ~ к i ́ v \eta \mu \alpha$
 $\tau \eta \varsigma \delta \alpha \alpha \pi \rho \alpha \gamma \mu \alpha ́ \tau \varepsilon v \sigma \eta \varsigma$.
七ásŋๆร.











 $\varepsilon \theta v ı к о ́ ~ к \alpha ı ~ \pi \alpha \gamma к о ́ \sigma \mu ı о ~ к \alpha \pi ı \tau \alpha \lambda ı \sigma \mu o ́ ~ \eta ́ ~ \alpha \nu ~ \theta \alpha ~ \pi \rho о \tau ц \mu \eta ́ \sigma \varepsilon ı ~ \tau \eta \nu ~ \alpha v \tau о \delta ı \alpha ́ \lambda \nu \sigma \eta ~ \tau о v . ~$

 $\delta \omega ́ \sigma \varepsilon \iota ~ \tau \eta ~ \theta \varepsilon ́ \sigma \eta ~ \tau o v ~ \sigma \tau о ~ N \varepsilon ́ o ~ \Sigma v v \delta ı к \alpha \lambda ı \sigma \tau ı к o ́ ~ К i ́ v \eta \mu \alpha, ~ к i ́ v \eta \mu \alpha ~ \mu \alpha \zeta ̧ ı o ́, ~ \tau \alpha \xi ̆ \kappa o ́, ~$


## 3.4 АПOEYNAIKAAIEMOE









 $\sigma v v \delta ı \kappa \alpha \lambda ı \sigma \mu o ́ ~(Z \alpha \mu \pi \alpha \rho \lambda о v ́ к о v, 1997)$.

Н $\sigma \cup v \delta ı к \alpha \lambda ı \tau \tau к \eta ์ ~ к р i ́ \sigma \eta ~ \varepsilon i ́ v \alpha ı ~ \alpha ́ \rho \rho \eta к \tau \alpha ~ \sigma ט v \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \eta ~ \mu \varepsilon ~ \tau \eta v ~$








[^7]











 єрүаఢо $\mu \varepsilon ́ v \omega v ~(\Pi \alpha \lambda \alpha ı \lambda o ́ \gamma o \varsigma, ~ 2006) . ~$


















 Е $\lambda \lambda \alpha ́ \delta \alpha, \delta \varepsilon v v \pi \alpha ́ \rho \chi \varepsilon \imath ~ \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ \varsigma ~ \kappa \alpha ı ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \varepsilon \varsigma ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma \varsigma ~ \sigma v v о \mu о \sigma \pi о v \delta i ́ \varepsilon \varsigma ~ \gamma ı \alpha ~ v \alpha$























Xарактпрıбтıќ́ $\alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha ı ~ \eta ~ \sigma о \mu \varphi \omega v i ́ \alpha ~ \tau о v ~ \sigma \omega \mu \alpha \tau \varepsilon i ́ o v ~ \varepsilon \rho \gamma \alpha \zeta ̆ о \mu \varepsilon ́ v \omega v ~ \sigma \tau о v ~$





 $\delta \eta \mu$ о́бıо тон $\alpha$ (Kатборíß $\alpha \varsigma, 2002$ ).



 (INE/ГГEE-A $\Delta \mathrm{E} \Delta \mathrm{Y}, 2012$ ):

* А $л о \sigma \tau о \lambda \grave{~ \tau \omega v ~} \sigma \omega \mu \alpha \tau \varepsilon i ́ \omega v$.
* $A \lambda \lambda \eta \lambda \varepsilon \gamma \gamma \dot{\prime} \eta$.

* $\Sigma \chi \varepsilon ́ \sigma \varepsilon 1 \varsigma ~ \mu \varepsilon ~ \tau о ~ к р о ́ \tau о \varsigma . ~$
* $\Sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \mu \varepsilon$ тоטร єрүобо́тєऽ.
* $\Delta ı \theta \mathrm{v} \tau \boldsymbol{\mu}{ }^{\circ} \mathrm{c}$.








 каı то оוкоч $\mu \varepsilon v ı \kappa o ́ ~ \alpha \pi o ́ ~ \tau \eta ~ б к о \pi ı \alpha ́ ~ \tau \omega v ~ \alpha ı \tau \eta \mu \alpha ́ \tau \omega v . ~$







 єрүабías












 $\pi i ́ \sigma \omega \alpha \pi o ́ ~ \tau ı \varsigma ~ \pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \tau \omega v ~ \varepsilon \rho \gamma о \delta о \tau \omega ́ v$. Eлíбๆ̧ $\theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \kappa \alpha ́ v o v v ~ \sigma \alpha \varphi \varepsilon ́ \varsigma ~ \pi \omega \varsigma ~ o 七 ~$
















К $\lambda \varepsilon \varepsilon^{\prime} v o v \tau \alpha \varsigma ~ \tau \eta \nu ~ \alpha v \alpha \varphi o \rho \alpha ́ ~ \gamma ı \alpha ~ \tau о \nu ~ \delta ı \varepsilon \theta v ı \sigma \mu o ́, ~ \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon ı ~ o ́ \tau ı ~ \sigma v v \eta ́ \theta \omega s ~ \eta ~$










 $\tau \eta \varsigma ~ \chi \omega ́ \rho \alpha \varsigma, ~ \beta о \eta \theta \dot{\omega} v \tau \alpha \varsigma ~ \tau \alpha ~ \sigma v v \delta ı \kappa \alpha ́ \tau \alpha ~ v \alpha ~ \alpha v \alpha \pi \tau v \chi \theta o v ́ v ~ \kappa \alpha ı ~ v \alpha ~ \delta v v \alpha \mu \omega ́ \sigma o v v ~(I N E / Г \Sigma E E-~$ $\mathrm{A} \Delta \mathrm{E} \Delta \mathrm{Y}, 2012$ ).

[^8]
## 4 H EYPЯПAÏКH $\triangle I A \Sigma T A \Sigma H ~ T H \Sigma ~ E P Г A \Sigma I A \Sigma ~$

##  ェTHN EИАНNIKH АГОРА ЕРГАГIAธ.

 $\mu о \rho \varphi \dot{v} \alpha \pi \alpha \sigma \chi$ о́ $\eta \sigma \eta \varsigma$ тоv $\tau 1 \varsigma ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho i ́ \zeta o v v ~ \tau \alpha ~ \mu \varepsilon 1 \omega \mu \varepsilon ́ v \alpha ~ \omega \rho \alpha ́ \rho ı \alpha, ~ o l ~ \chi \alpha \mu \eta \lambda o ́ \tau \varepsilon \rho o 七$


Oı vé $\varsigma \varsigma \mu \rho \varphi \varepsilon ́ \varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~(B \lambda \alpha \sigma \tau o ́ \varsigma, ~ 2012): ~:$



* Пробตрıvŋ́ $\alpha \pi \alpha \sigma \chi$ о́ $\eta \eta \sigma \eta$, oঠп $\gamma i ́ \alpha$ E.E. ( 2008/14)

* Y $\pi \varepsilon \rho \gamma о \lambda \alpha \beta i ́ \alpha$
* Ек лєрıтроли́я в $\rho \gamma \alpha \sigma i ́ \alpha$
* A $\delta \dot{1} \lambda \omega \tau \eta$ ع $\rho \gamma \alpha \sigma i ́ \alpha$.


### 4.1.1 Ек $\pi \varepsilon \rho \iota \tau \rho о \pi \eta ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$



 орıб $\mu \varepsilon ́ v \varepsilon \varsigma ~ \mu o ́ v o ~ \eta \mu \varepsilon ́ \rho \varepsilon \varsigma ~ \alpha v \alpha ́ ~ \varepsilon \beta \delta o \mu \alpha ́ \delta \alpha ~ \eta ́ ~ \mu \eta ́ v \alpha ~ \eta ́ ~ o \rho ı \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \mu o ́ v o ~ \varrho ́ \rho \varepsilon \varsigma ~ \alpha v \alpha ́ ~ \eta \mu \varepsilon ́ \rho \alpha, ~$ $\varepsilon \beta \delta о \mu \alpha ́ \delta \alpha \dot{\emptyset} \mu \eta \dot{v} \alpha$.














 тov̧. Eáv $\delta \varepsilon v \alpha \pi \alpha \sigma \chi \circ \lambda \eta \theta$ ov́v $\sigma \varepsilon ~ \eta \mu \varepsilon ́ \rho \alpha ~ \alpha \rho \gamma i ́ \alpha \varsigma, ~ \eta ~ о \pi о i ́ \alpha ~ \sigma v v \varepsilon ́ \pi ı \pi \tau \varepsilon ~ \mu \varepsilon ~ \tau \eta \nu ~ \eta \mu \varepsilon ́ \rho \alpha ~$








### 4.1.2 Мغрıкท́ $\alpha \pi \alpha \sigma \chi$ о́ $\lambda \eta \sigma \eta$





 $\tau \eta \varsigma ~ \sigma ט ́ \mu \beta \alpha \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \alpha \pi o ́ ~ \pi \lambda \eta ́ \rho o v \varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ \sigma \varepsilon \mu \varepsilon \rho ı к \emptyset ́ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta$. Н $\mu \varepsilon i ́ \omega \sigma \eta$

 врүабías.




 $\pi \alpha \rho \alpha ́ \sigma \chi \varepsilon 1 ~ \sigma \tau \circ v ~ \varepsilon \rho \gamma о \delta o ́ \tau \eta ~ \tau о v, ~ \varepsilon \varphi o ́ \sigma о \nu ~ \tau о v ~ \zeta \eta \tau \eta \theta \varepsilon i ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \pi \lambda \eta ́ \rho о v \varsigma ~ \alpha \pi \alpha \sigma \chi о \lambda \eta ́ \sigma \varepsilon \omega \varsigma$,
 2014).

## 

 т $\ell \lambda \varepsilon \cup \tau \alpha i ́ \alpha ~ \pi \varepsilon v \tau \alpha \varepsilon \tau i ́ \alpha ~ \delta \varepsilon v ~ \eta ́ \tau \alpha \nu ~ \delta v v \alpha \tau o ́ v ~ v \alpha ~ \alpha \varphi \eta ́ \sigma o v v ~ \alpha v \varepsilon \pi \eta \rho \varepsilon ́ \alpha \sigma \tau \eta ~ \tau \eta \nu ~ \alpha \gamma о \rho \alpha ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma, ~$









 $\varepsilon \pi \imath \theta \varepsilon \omega ́ \rho \eta \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha s ~ \gamma 1 \alpha$ то A’ $\varepsilon \xi \alpha ́ \mu \eta \eta$ vo тov 2013, 2013).


 то A' $\varepsilon \xi \dot{\alpha} \mu \eta \geqslant$ vo $\tau 0 v 2013,2013)$.

A' $\varepsilon \xi \dot{\alpha} \mu \eta$ vo $\tau \omega v$ عт $\omega$ v 2013-2012.

| 'Etos |  | Néz¢ $\pi \rho 0 \sigma \lambda \eta$ ท́ |  |  |  | А $\lambda \lambda \alpha \gamma \eta ์ \sigma$ v́ $\mu \beta \sigma \eta \varsigma$ $\pi \lambda \eta ́ \rho о \nu \varsigma$ А $\pi \alpha \sigma \chi 0 ́ \lambda \eta \sigma \eta \varsigma$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Пגท́рๆऽ | Мерıкй | $\begin{gathered} \text { Ек } \\ \pi \varepsilon \rho ı \tau \rho о \pi \eta ́ \varsigma ~ \end{gathered}$ |  |  |  |  |  |
| A E\%. 2013 | $\stackrel{\sim}{\infty}$ | 268262 | 136352 | 27303 | 431917 | N <br> $\pm$ | 7810 | 7846 | 30108 |
| A E\%. 2013 | $\xrightarrow[\underset{\sim}{ \pm}]{\substack{\text { ® }}}$ | 176549 | 109885 | 28161 | 314595 | $\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \underset{\sim}{7} \end{gathered}$ | 12022 | 7350 | 44122 |
| - ııqpopá Á <br> E . 2013-12 | $\stackrel{\rightharpoonup}{\theta}$ | 91713 | 26467 | -858 | 117322 | ¢ | -4212 | 496 | -14014 |
| $\begin{gathered} \Delta ı \alpha \varphi о \rho \alpha ́ ~ A ~ \\ \text { E } \xi .2013-12 \\ \% \end{gathered}$ | $\underset{\sigma}{N}$ | 51,65 | 24,09 | -3,05 | 37,29 | $\underset{7}{7}$ | -35,04 | 6,75 | -31,76 |




 $\pi о \sigma о \sigma \tau 1 \alpha i ́ \alpha ~ \alpha \pi o ́ \kappa \lambda ı \sigma \eta ~ \tau \omega v ~ v \varepsilon ́ \omega v ~ \pi \rho о \sigma \lambda \eta ́ \psi \varepsilon \omega v ~ \alpha v \alpha ́ ~ \varepsilon i ́ \delta o \varsigma ~ \sigma v ́ \mu \beta \alpha \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \gamma 1 \alpha ~ \tau о ~ A ’ ’$



|  | A' $^{\prime}$ <br> EЕAMHNO | B' $^{\prime}$ <br> EEAMHNO |
| :--- | :---: | :---: |
| EK ПEPITPOПHะ | 27303 | 28161 |

[^9]| МЕРІКН | 136352 | 109885 |
| :--- | :--- | :--- |
| ПАНРНЕ | 268262 | 176549 |

 то A' $\varepsilon \xi \dot{\alpha} \mu \eta$ vo $\tau 0 v 2013,2013)$.

$\Delta ı \alpha ́ \gamma \rho \alpha \mu \mu \alpha$ 4.2: Oı vє́ $\varepsilon \varsigma \pi \rho о \sigma \lambda \eta ́ \psi \varepsilon ı \varsigma ~ \alpha v \alpha ́ ~ \varepsilon i ́ \delta o \varsigma ~ \sigma ט ́ \mu ß \alpha \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~$
 то $\mathrm{A}^{\prime} \varepsilon \xi \alpha ́ \mu \eta$ vo $\tau$ оv 2013, 2013).

Пívaкає 4.3: Побобтıаí $\alpha \pi о ́ к \lambda ı \sigma \eta ~ \tau \omega v ~ v \varepsilon ́ \omega v ~ \pi \rho о \sigma \lambda \eta ́ \psi \varepsilon \omega v ~ \alpha v \alpha ́ ~ \varepsilon i ́ \delta o \varsigma ~ \sigma v ́ \mu \beta \alpha \sigma \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~$

|  | $\mathbf{A}^{\prime}$ EEAMHNO <br> TOY 2013 |
| :---: | :---: |
| EK <br> ПEPITPOПНะ | $-3,05 \%$ |
| МЕРIKH | $24,09 \%$ |
| ПАНРНГ | $51,95 \%$ |






 то A' $\varepsilon \xi \alpha ́ \mu \eta$ ข $\tau$ оv 2013, 2013).







 2013, $\sigma \varepsilon ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau \eta \nu ~ \alpha v \tau i ́ \sigma \tau o \not \chi \eta ~ \pi \varepsilon \rho i ́ o \delta o ~ \tau o v ~ 2012, ~ \varepsilon i ́ v \alpha ı ~ \mu \varepsilon є \omega \mu \varepsilon ́ v \varepsilon \varsigma ~ \kappa \alpha \tau \alpha ́ ~ 41,61 \% ~ o ́ \sigma o v ~$ $\alpha \varphi о \rho \alpha ́ ~ \tau \eta ~ \mu \varepsilon \rho ı и ́ ~ \alpha \pi \alpha б \chi о ́ \lambda \eta \sigma \eta ~ к \alpha l ~ к \alpha \tau \alpha ́ ~ 35,04 \% ~ o ́ \sigma o v ~ \alpha \varphi о р \alpha ́ ~ \tau \eta \nu ~ \varepsilon к ~ \pi \varepsilon \rho ı \tau \rho о \pi ท ́ s ~$





 $\alpha \pi \alpha \sigma \chi \dot{\lambda} \lambda \eta \sigma \eta \varsigma \sigma \varepsilon \alpha \dot{\alpha} \lambda \lambda \varepsilon \varsigma \varepsilon v \varepsilon ́ \lambda ı \kappa \tau \varepsilon \varsigma ~ \sigma v \mu \beta \alpha ́ \sigma \varepsilon เ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma$.



 то A' $\varepsilon \xi \dot{\alpha} \mu \eta \geqslant$ vo $\tau 0 v 2013,2013)$.




 $\mu \varepsilon \tau \alpha \tau \rho о \pi \dot{\omega v} \sigma \cup \mu \beta \alpha ́ \sigma \varepsilon \omega v$ عрү $\alpha \sigma i ́ \alpha \varsigma ~ \alpha \pi o ́ ~ \pi \lambda \eta ́ \rho \eta ~ \sigma \varepsilon \mu \varepsilon \rho ı к \eta ́ ~ к \alpha ı ~ \varepsilon к ~ \pi \varepsilon \rho ı \tau \rho о \pi ท ́ s ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta ~$

 є $\xi \dot{\alpha} \mu \eta$ vo тоv 2013, 2013).

### 4.1.4 Oı $\mu \varepsilon \tau \alpha \beta 0 \lambda \varepsilon ́ \varsigma ~ \sigma \tau \eta \nu$ A $\pi \alpha \sigma \chi 0 ́ \lambda \eta \sigma \eta$ \& $\tau \eta \nu$ Avє $\rho \gamma i ́ \alpha ~ \tau \eta \nu$ EE-28 20082013







 2008-2012, о́бо о́ $\mu \omega \varsigma ~ \kappa \alpha \iota ~ к \alpha \tau \alpha ́ ~ \tau о ~ \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ o ~ \varepsilon ́ \tau о \varsigma . ~ \Sigma \tau \eta \nu ~ E v \rho \omega \zeta ̆ \omega ́ v \eta ~ \alpha v \alpha \lambda о \gamma \varepsilon i ́ ~ \tau о ~ 65 \% ~ \tau \omega \nu ~$













 $\varepsilon \pi i \pi \varepsilon \delta о$.
 єрүабías $\chi \alpha \mu \eta \lambda о v ́ ~ \varepsilon к \pi \alpha ı \delta \varepsilon v \tau ı к о v ́ ~ \varepsilon \pi ı \tau \varepsilon ́ \delta o v, ~ 4.046 .500 ~ Ө \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \varepsilon v \delta ı \alpha ́ \mu \varepsilon б \sigma о v ~$




Oı Өغ́бغıs $\alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ \mu \varepsilon เ \omega ́ v o v \tau \alpha ı ~ \sigma u v \varepsilon \chi \omega ́ s ~ \sigma \tau о ~ \chi \alpha \mu \eta \lambda o ́ ~ к \alpha ı ~ \tau о ~ \mu \varepsilon ́ \sigma o ~$










 єрүабі́а, каӨஸ́s $\eta$ крі́бๆ $\alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta \varsigma ~ к \alpha ı ~ \alpha v \varepsilon \rho \gamma i ́ \alpha s ~ \sigma \tau \eta v ~ E E-28 ~ к \alpha ı ~ \sigma \tau \eta \nu ~ E v \rho \omega \zeta ́ \omega v \eta ~$



##  2009-2013


 $\alpha \pi \alpha \sigma \chi$ о́ $\eta \sigma \eta \varsigma$.



 $\pi \varepsilon \rho i ́ o \delta o ~ \pi \rho ı v ~ \tau \eta \nu ~ к р і ́ \sigma ๆ, ~ о ́ \sigma о ~ к \alpha ı ~ \pi о ю \tau \iota к \alpha ́ ~ o \delta \varepsilon v ́ o v v ~ \pi \rho о \varsigma ~ \tau о ~ к \alpha \theta \varepsilon \sigma \tau \omega ́ \varsigma ~ \tau \eta \varsigma ~ \varepsilon v \varepsilon \lambda ı \xi i ́ a \varsigma, ~$


[^10]


Oı $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi о v ~ \varepsilon ́ \chi o v v ~ \varepsilon \pi \varepsilon ́ \lambda \theta \varepsilon ı, ~ \delta ı \varepsilon v к о \lambda o ́ v o v \tau \alpha ı ~ \sigma \varepsilon ~ \pi о \lambda v ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~ \beta \alpha \theta \mu o ́ ~ к \alpha ı ~$











 $\varepsilon \xi \alpha ́ \mu \eta v o ~ \tau о v ~ 2013, ~ 2013): ~$


 epүабías.
$\Theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \varepsilon \pi ı \sigma \eta \mu \alpha v \theta \varepsilon i ́ ~ o ́ \tau ı ~ \eta ~(\sigma \eta \mu \alpha v \tau \iota \kappa \eta ́) ~ \alpha v ́ \xi \eta \sigma \eta ~ \tau \omega v ~ \varepsilon v \varepsilon ́ \lambda ı \kappa \tau \omega v ~ \mu о \rho \varphi \omega ́ v$
















 $\pi \alpha \rho о v \sigma i \alpha ́ \zeta o v \tau \alpha \varsigma ~ \mu \varepsilon i ́ \omega \sigma \eta ~ к \alpha \tau \alpha ́ ~ 28 \% ~ \pi \varepsilon \rho i ́ \pi о v . ~ H ~ \pi \alpha \rho \alpha \tau \eta \rho о и ́ \mu \varepsilon v \eta ~ \alpha v \tau \eta ́ ~ \mu \varepsilon i ́ \omega \sigma \eta ~ \tau \omega \nu$









 $\pi \varepsilon \rho ı \tau \rho о \pi \mathfrak{\varsigma} \varsigma \rho \gamma \alpha \sigma i ́ \alpha$.

इто ídıo $\chi \rho о v ı к о ́ ~ \delta ı \alpha ́ \sigma \tau \eta \mu \alpha, ~ \sigma \tau \eta ~ \sigma ט ́ v \alpha \psi \eta ~ v \varepsilon ́ \omega v ~ \sigma ৩ \mu \beta \alpha ́ \sigma \varepsilon \omega v ~ \varepsilon \rho \gamma \alpha \sigma i ́ a s, ~$
 єрүабías єлí тov $\sigma \cup v o ́ \lambda o v ~ \tau \omega v ~ v \varepsilon ́ \omega v ~ \sigma \cup \mu \beta \alpha ́ \sigma \varepsilon \omega v . ~$







| 'Етог | ПАНРнг Epialia | Mepikh <br> Eptaila | Ek <br> Перітро IHE Epiaila | Гeniko <br> EyNOAO <br> NE ${ }^{2}$ <br> ПРоглн <br> YERN | EyNOAO Mepikhe KAI EK ПЕРІтРОП H $\Sigma$ Eprailas | $\begin{gathered} \text { HOLOгTO } \\ \text { EYEAIKT } \\ \text { N MOPФ } \\ \text { EII TOY } \\ \text { гYNOAOY } \\ (\%) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| 2012 | 375.843 | 241.985 | 65.615 | 683.443 | 307.600 | 45\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 | 460.706 | 233.558 | 68.300 | 762.564 | 301.858 | 40\% |
| 2010 | 586.281 | 228.994 | 60.677 | 875.952 | 289.671 | 33\% |
| 2009 | 746.911 | 157.738 | 40.489 | 945.138 | 198.227 | 21\% |
| $\begin{gathered} \text { AПOK } \\ \text { ИIइH } \\ 2009- \\ 2012 \end{gathered}$ | -371.068 | 84.247 | 25.126 | -261.695 | 109.373 |  |
| $\begin{gathered} \hline \text { AПOK } \\ \text { ДILH } \\ 2009- \\ 2012 \\ (\%) \end{gathered}$ | -49,68\% | 53,41\% | 62,06\% | -27,69\% | 55,18\% |  |

 то A' $\varepsilon \xi \dot{\alpha} \mu \eta$ vo $\tau 0 v 2013,2013)$.


 $\varepsilon \cup \varepsilon ́ \lambda ı \kappa \tau \varepsilon \varsigma ~ \sigma \cup \mu \beta \alpha ́ \sigma \varepsilon ı \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma$.


 $\alpha \rho ı \theta \mu o ́ \varsigma ~ \tau o v \varsigma ~ \tau \varepsilon \tau \rho \alpha \pi \lambda \alpha \sigma 1 \alpha ́ \zeta \varepsilon \tau \alpha 1$ ( $\alpha$ v́ $\eta \eta \sigma \eta$ 397\%).

Eıסıко́тєра, оı $\sigma \cup \mu \beta \alpha ́ \sigma \varepsilon ı \varsigma ~ \pi \lambda \eta ́ \rho о и я ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta \varsigma ~ \pi о v ~ \mu \varepsilon \tau \alpha \tau р є ́ \pi о v \tau \alpha ı ~ \sigma \varepsilon ~$






 5.5).


| 'ETOE | MEPIKH <br> ЕРГАгIA | EK ПЕРITPOП HZ EPГAइIA ME इYMФSNH ГNSMH EPГAZOME NOY | EK ПЕРITPO ПНД EPГAइ IA ME MONOME PH ГNQMH EPГOLOT H | $\begin{gathered} \text { इYNONO } \\ \text { EK } \\ \text { ПЕРITPO } \\ \text { ПН工 } \\ \text { ЕРГАГIA } \\ \Sigma \end{gathered}$ | $\underset{\text { ГYNIKO }}{\text { ГYNO }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2012 | 49.640 | 21.478 | 13.372 | 34.850 | 84.490 |
| 2011 | 32.420 | 19.128 | 7.414 | 26.542 | 58.962 |
| 2010 | 18.713 | 6.527 | 1.013 | 7.540 | 26.253 |
| 2009 | 12.219 | 4.146 | 612 | 4.758 | 16.977 |
| $\begin{gathered} \text { АПОК } \\ \Lambda \mathrm{I} \Sigma \mathrm{H} \\ 2009- \\ 2012 \end{gathered}$ | 37.421 | 17.332 | 12.760 | 30.092 | 67.513 |
| $\begin{gathered} \text { АПOK } \\ \text { КILH } \\ 2009- \\ 2012 \\ (\%) \end{gathered}$ | 306,25\% | 418,04\% | 2084,97\% | 632,45\% | 397,67\% |

 то A' $\varepsilon \xi \dot{\alpha} \mu \eta$ vo $\tau 0 v 2013,2013)$.





## 4.2 ПАЕONEKTHMATA-MEIONEKTHMATA

Т $\alpha \pi \lambda \varepsilon о v \varepsilon \kappa \tau \eta ́ \mu \alpha \tau \alpha$ тоv $\delta v \nu \eta \tau \iota \kappa \alpha ́ ~ \varepsilon ́ \chi \varepsilon ı ~ \eta ~ \mu \varepsilon \rho ı к \eta ́ ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta ~ к \alpha ı ~ \eta ́ ~ \varepsilon к ~$ $\pi \varepsilon \rho \imath \rho о \pi \eta ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \varepsilon i ́ v \alpha ı ~ \pi о \iota к i ́ \lambda \alpha . ~ \Omega \varsigma ~ \beta \alpha \sigma ı к \eta ́ ~ \theta \varepsilon \tau \imath \kappa \eta ́ ~ \varepsilon \pi i ́ \pi \tau \omega \sigma \eta ~ \alpha \nu \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha \iota ~ \omega \varsigma ~ \mu ı \alpha$





 $\kappa \alpha \theta \varepsilon \sigma \tau \omega ́ \varsigma \mu \varepsilon \rho ı \kappa \eta ́ \varsigma ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta \varsigma ~ \eta ́ ~ \varepsilon \kappa \pi \varepsilon \rho ı \tau \rho о \pi \eta ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha, \mu \pi о \rho о v ́ v v \alpha \sigma v v \delta v \alpha ́ \sigma o v v \tau \eta v$




 $\pi \lambda \eta \theta v \sigma \mu$ ós $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau \alpha ~ 2 / 3 ~ \tau \omega v ~ \mu \varepsilon \rho ı к ́ ́ \varsigma ~ \alpha \pi \alpha \sigma \chi о \lambda о v ́ \mu \varepsilon v \omega v ~ \eta ́ ~ \varepsilon к ~ \pi \varepsilon \rho ı \tau \rho о \pi ท ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \sigma \varepsilon ~$























 $\varepsilon \rho \gamma \alpha ́ \zeta o v \tau \alpha ı \mu \varepsilon \alpha v \tau o ́ ~ \tau о ~ \kappa \alpha \theta \varepsilon \sigma \tau \omega ́ \varsigma, ~ \alpha v ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ v \alpha ~ \mu \varepsilon \tau \alpha \tau \rho \alpha \pi \varepsilon є ́ ~ \sigma \varepsilon ~ \pi \lambda \eta ́ \rho \eta \varsigma ~$






 в $\rho \gamma \alpha \sigma i ́ \alpha \varsigma$.







 єрүобо́тєц.

Oı єрүабі́єऽ $\mu \varepsilon \rho ı к \grave{\varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ \eta ́ ~ \varepsilon к ~ \pi \varepsilon \rho ı \tau \rho о \pi \eta ́ s ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \sigma \varepsilon ~ \alpha \rho к \varepsilon \tau \varepsilon ́ \varsigma ~}$



 аveıঠ́ккvтот.




То $\pi \rho ต ́ \tau о ~ \alpha \pi o ́ ~ \alpha v \tau \alpha ́ ~ \alpha \varphi о \rho \alpha ́ ~ \tau \eta \nu ~ \alpha ́ \pi о \psi \eta ~ o ́ \tau \imath ~ \delta ı \alpha ı \omega v i ̧ ̌ \varepsilon ı ~ к ı ~ \alpha v \alpha \pi \alpha \rho \alpha ́ \gamma \varepsilon ı ~ \tau о ~ \rho o ́ \lambda о ~$

 $\mu \varepsilon ́ \sigma \omega ~ \tau \eta \varsigma ~ \mu \varepsilon \rho ı к \eta ́ \varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ \eta ́ ~ \tau \eta \varsigma ~ \varepsilon \kappa ~ \pi \varepsilon \rho ı \tau \rho о \pi \eta ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon \pi \varepsilon ́ \lambda \theta \varepsilon ı ~ \mu o ́ v o$



 2010).






Avtó $\delta \varepsilon \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \mu \varepsilon \tau \alpha \varphi \rho \alpha \sigma \tau \varepsilon i ́, ~ \omega \varsigma ~ \sigma v \mu \beta \imath \beta \alpha \sigma \mu o ́ \varsigma ~ \varepsilon \xi ̆ เ \sigma о \rho \rho o ́ \pi \eta \sigma \eta \varsigma ~$




 $\varepsilon \pi ı \tau \varepsilon \cup \chi \theta \varepsilon i ́ ~ \pi \alpha \rho \alpha ́ ~ \mu o ́ v o ~ \mu \varepsilon ~ \tau \eta ~ \sigma ט v \varepsilon \chi \eta ́ ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta ~ \kappa \alpha ı ~ \varepsilon \pi \upharpoonleft \mu o ́ \rho \varphi \omega \sigma \eta ~ \varepsilon i ́ \tau \varepsilon ~ \sigma \tau \alpha ~ \pi \lambda \alpha i ́ \sigma ı \alpha ~ \tau \eta \varsigma ~$
















$\alpha \pi о \mu о ́ v \omega \sigma \eta$ ท́ $\pi \varepsilon \rho \imath \theta \omega \rho ı \pi о i ́ \eta \sigma \eta, \kappa \alpha \kappa \varepsilon ́ \varsigma ~ \sigma v v \theta \eta ́ \kappa \varepsilon \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma, ~ \alpha \delta v v \alpha \mu i ́ \alpha ~ о \rho \gamma \alpha ́ v \omega \sigma \eta \varsigma ~ \sigma \tau о и \varsigma ~$


 $\alpha \pi \alpha \sigma \chi 0 ́ \lambda \eta \sigma \eta \varsigma$.


 орүаvютıки́ $\lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha ~ \tau \eta \varsigma ~ \varepsilon \pi ı \chi \varepsilon i ́ \rho \eta \sigma \eta \varsigma . ~$

















 tov.





 $\alpha \delta v v \alpha \tau \varepsilon i ́ ~ o ́ \mu \omega s ~ v \alpha \pi \alpha \rho \alpha ́ \sigma \chi \varepsilon 1 ~ \mu 1 \alpha ~ \mu o ́ v ц \mu \eta ~ \lambda v ́ \sigma \eta$. To $\chi \alpha \mu \eta \lambda o ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta o ~ \alpha \pi o ́ \delta o \sigma \eta \varsigma ~ к \alpha ı ~ \eta ~$ $\pi \alpha \rho \varepsilon \pi о ́ \mu \varepsilon \vee \eta ~ \chi \alpha \mu \eta \lambda \eta ́ ~ \pi о ю ́ \tau \eta \tau \alpha ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \varphi \alpha v \varepsilon \rho ต ́ v o v v ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ́ ~ \tau \eta \varsigma ~$







##  











 (Каракıо $\lambda \alpha ́ \varphi \eta, 2012):$
 каı $\varepsilon \pi เ \delta o ́ \mu \alpha \tau \alpha$.

 $\sigma \chi \varepsilon ́ \sigma \varepsilon 1 \varsigma$.
 єрүабા๙кદ̧́ бхદ́бદı૬.



Н عло́ $\mu \varepsilon \vee \eta ~ \mu \varepsilon \tau \alpha \beta о \lambda \eta ́ ~ \pi \varepsilon \rho i ́ o \delta о \varsigma ~ \alpha \varphi о \rho \alpha ́ ~ \sigma \tau \eta v ~ \varepsilon \pi ı к \alpha ı о л о і ́ \eta \sigma \eta ~ \alpha \pi o ́ ~ \tau о ~$















b) Tо $\alpha \tau о \mu$ ко́ врүатıко́ díкаıо.
c) To $\sigma \nu \lambda \lambda о \gamma \iota \kappa o ́ ~ \varepsilon \rho \gamma \alpha \tau \iota \kappa o ́ ~ \delta i ́ к \alpha ı o . ~$


## 4.4 ПЕPIOPILMO® TH $\Sigma$ ANEPГIA




 $\pi \alpha \rho \varepsilon \mu \beta \alpha ́ \sigma \varepsilon \iota \varsigma ~ \sigma \tau \eta \nu$ аүора́ $\varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \pi о v ~ \varepsilon ́ \theta \varepsilon \tau \alpha \nu ~ \omega \varsigma ~ \beta \alpha \sigma ı к o ́ ~ \sigma \tau о ́ \chi о ~ \tau \eta \nu ~ \pi \rho о ळ ́ \theta \eta \sigma \eta ~ \tau \eta \varsigma ~$







 $\sigma \chi \varepsilon \delta o ́ v ~ \alpha \pi о \kappa \lambda \varepsilon І \sigma \tau \iota \kappa \alpha ́ ~ \sigma \tau \eta v ~ \pi \lambda \varepsilon v \rho \alpha ́ ~ \tau \eta \varsigma ~ \pi \rho о \sigma \varphi о \rho \alpha ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma$.





















[^11]
 коเvตvıкळ́v $\sigma v v о \mu \imath \lambda \eta \tau \omega ́ v$.





## 5 АПОРРҮ@MIГH EPГАГIAK

## 5.1 ЕІІАГЛГН

Oı $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi о v ~ \sigma u v \tau \varepsilon \lambda \circ и ́ v \tau \alpha \iota ~ \sigma \tau \eta \nu \varepsilon \lambda \lambda \eta \nu \iota \kappa \eta ́ \alpha \gamma о \rho \alpha ́ \alpha \lambda \lambda \lambda \alpha ́ \kappa \alpha ı \tau \eta \nu \pi \alpha \gamma \kappa о \sigma \mu i ́ \alpha$





 $\varepsilon \xi \dot{\alpha} \mu \eta$ vo тov 2013, 2013).

Т $\alpha \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \pi о v ~ \alpha v \alpha \varphi \varepsilon ́ \rho Ө \eta \kappa \alpha \nu ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \mu \eta \nu ~ \alpha \pi о \tau \varepsilon \lambda о и ́ v ~ \kappa \alpha ́ \tau ı ~ \kappa \alpha ı v о ט ́ \rho \gamma ъ, ~$

 коเขตvıкй $\alpha v \alpha \lambda \gamma \eta \sigma i ́ \alpha ~ к \alpha ı ~ \pi \lambda \eta ́ \rho \eta ~ \alpha \pi \alpha \xi i ́ \omega \sigma \eta ~ \pi о v ~ \varepsilon к \delta \eta \lambda \omega ́ v o v \tau \alpha ı ~ \alpha \pi \varepsilon ́ v \alpha v \tau ı ~ \sigma \tau о ~ \sigma ט ́ v o \lambda o ~ \tau \omega v ~$






 Ерүатıкó סíкаıo, 2014).






 $\kappa \varepsilon \varphi \alpha \lambda \alpha i ́ o v ~ к \alpha ı ~ \tau \eta ~ \beta i ́ \alpha ı \eta ~ \alpha v \alpha \delta ı \alpha v о \mu \eta ́ ~ \pi \lambda о v ́ \tau о v ~ \sigma \varepsilon ~ \beta \alpha ́ \rho о \varsigma ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~ O ı ~ \pi о \lambda ı \tau เ \kappa \varepsilon ́ \varsigma ~$



 $\sigma \tau \rho \omega \mu \alpha ́ \tau \omega v(\mathrm{INE} / \Gamma \Sigma \mathrm{EE}-\mathrm{A} \Delta \mathrm{E} \Delta \mathrm{Y}, 2012)$.

 $\mu$ ноӨ́́v $\pi$ оv $\pi \rho о к и ́ \pi \tau о v \nu ~ \alpha \pi о ́ ~ \tau \eta \nu ~ \pi \lambda \eta ́ \rho \eta ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta . ~ \Omega \varsigma ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \omega \nu ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega$


 $\mu \varepsilon \gamma \alpha ́ \lambda o \quad \beta \alpha \theta \mu$ ó $\pi \lambda \varepsilon ́ o v ~ \tau 0 v \varsigma ~ \pi \rho o ́ \tau \varepsilon \rho o v \varsigma ~ \mu ı \sigma \theta o v ́ \varsigma ~ \tau \eta \varsigma ~ \mu \varepsilon \rho ı к \eta ́ \varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma ~ к \alpha ı ~ \tau \eta \varsigma ~ \varepsilon \kappa ~$



 ерүабías бтпv Evрஸ́лт.


 $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i ́ \alpha ~ \chi \rho o ́ v ı \alpha ~ \pi \alpha \rho \alpha ́ ~ \tau \eta ~ \delta р \alpha \mu \alpha \tau ı к \eta ́ ~ \mu \varepsilon i ́ \omega \sigma \eta ~ \tau \omega v ~ \mu ו \sigma \theta \omega ́ v ~ \eta ~ Е \lambda \lambda \alpha ́ \delta \alpha ~ v \pi \varepsilon \chi \omega ́ \rho \eta \sigma \varepsilon ~ \alpha \pi o ́ ~ \tau \eta v$

 Tаvтó $\rho о v \alpha \mu \varepsilon \tau \imath \varsigma ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \alpha v \alpha \mu \varepsilon ́ v \varepsilon \tau \alpha ı ~ v \alpha ~ \varepsilon \pi \omega \varphi \varphi \varepsilon \lambda \eta \theta о v ́ v ~ \imath \sigma \chi \nu \rho \alpha ́ ~ \varepsilon \theta v i \kappa \alpha ́ ~ \kappa \alpha ı ~$




 $\kappa \alpha \theta \varepsilon \sigma \tau \omega ́ \varsigma ~ v \pi о \chi \omega \rho \varepsilon i ́ ~ к \alpha \tau \alpha ́ ~ 3 ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha ~ \sigma о \gamma к р \iota \tau к \alpha ́ ~ \mu \varepsilon ~ \varepsilon к в i ́ v \alpha ~ \pi о v ~ i ́ \sigma \chi v \alpha \nu ~ \pi \rho ı \nu ~ \alpha \pi о ́ ~ \tau о ~$





 2014).

##  ПЕРIOДO 2010-2012









 $30 \%$ avtíбтoı $\alpha$.





Н $\pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ \varepsilon \xi \varepsilon \lambda i ́ \sigma \sigma \varepsilon \tau \alpha 1 ~ \kappa \alpha ı ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \sigma \varepsilon ~ \mu ı \alpha ~ \sigma \tau \imath \gamma \mu \eta ́ ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta v ~$


 $\varepsilon \lambda \varepsilon \gamma \kappa \tau \iota \kappa \omega ́ v \mu \eta \chi \alpha \nu ı \sigma \mu \omega ́ v$.





 $\kappa \alpha \iota \alpha \delta \dot{\eta} \lambda \omega \tau \eta$ عрү $\alpha \sigma i ́ \alpha$ то इЕПЕ.


 $\mu \varepsilon \tau \alpha \varphi о \rho ı к \varepsilon ́ \varsigma ~ \varepsilon \pi \imath \chi \varepsilon \iota \rho \eta ́ \sigma \varepsilon ı \varsigma, ~ \tau о ~ \lambda ı \alpha v ı к o ́ ~ \varepsilon \mu \pi о ́ \rho ı о, ~ \eta ~ к \alpha \theta \alpha \rho ı о ́ \tau \eta \tau \alpha . ~ П \alpha \rho \alpha ́ \lambda \lambda \lambda \eta \lambda \alpha ~ \eta$ $\alpha v \alpha \sigma \varphi \alpha ́ \lambda ı \sigma \tau \eta ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \sigma v v \delta \varepsilon ́ \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \tau о \cup \varsigma ~ \mu \varepsilon \tau \alpha v \alpha ́ \sigma \tau \varepsilon \varsigma ~ \sigma \tau о \cup \varsigma ~ о \pi о i ́ o v \varsigma ~ v \pi \alpha ́ \rho \chi о v v ~ i \delta ı \alpha i ́ t \varepsilon \rho \alpha ~$

 $9.345 \alpha v \alpha \sigma \varphi \alpha ́ \lambda ı \sigma \tau о 1 ~ \varepsilon \rho \gamma \alpha \zeta ้ o ́ \mu \varepsilon v o ı ~ \varepsilon \pi i ́ ~ \sigma v v o ́ \lambda o v ~ 22.006 \alpha \lambda \lambda о \delta \alpha \pi \omega ́ v ~ \varepsilon \rho \gamma \alpha \zeta ̌ o ́ \mu \varepsilon v \omega v . ~$

 $\varepsilon \pi \downarrow \chi \varepsilon \varphi \rho \eta ́ \sigma \varepsilon 1 \varsigma ~ \pi o v ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \theta \eta \kappa \alpha v(\mathrm{INE} / \Gamma \Sigma \mathrm{EE}-\mathrm{A} \Delta \mathrm{E} \Delta \mathrm{Y}, 2012)$.

### 5.3 EEEAIEH T ETOE 2012

 єрүатıко́ סíкаı, $\sigma \tau \iota \varsigma ~ \sigma \cup \lambda \lambda о \gamma ı к \varepsilon ́ \varsigma ~ \delta ı \alpha \pi \rho \alpha \gamma \mu \alpha \tau \varepsilon v ́ \sigma \varepsilon ı \varsigma ~ к \alpha ı ~ \sigma \tau \eta ~ \rho v ́ \theta \mu ı \sigma \eta ~ \tau \omega v ~ \mu ı \sigma \theta о \lambda о \gamma ı к ळ ́ v ~$







[^12]
 $\varepsilon \pi \tau \chi \varepsilon \iota \rho \eta \sigma \iota \alpha \kappa \alpha ́ \sigma \omega \mu \alpha \tau \varepsilon i ́ \alpha$.
 $\kappa \lambda \alpha ́ \delta o v s ~ \tau \eta \varsigma ~ o ו к о v o \mu i ́ \alpha \varsigma: ~ \mu \varepsilon \tau \alpha \pi о і ́ \eta \sigma \eta, ~ \varepsilon \mu \pi о ́ \rho ı ~ к \alpha ı ~ \xi \varepsilon v o \delta о \chi \varepsilon i ́ \alpha-\varepsilon \sigma \tau ı \alpha \tau о ́ \rho ı \alpha . ~$


 рךбıкќv $\Sigma \Sigma \mathrm{E}$ ．


 $\mu \iota \sigma \theta$ одоүккळ́v $\mu \varepsilon ⿺ 𠃊 ́ \sigma \varepsilon \omega v$ ．


 $\alpha \pi o ́ ~ \tau о ~ \sigma ט ́ v o \lambda о ~ \tau \omega v ~ \varepsilon \pi \tau \chi \varepsilon \emptyset \eta ́ \sigma \varepsilon \omega v ~ к \alpha ı ~ \tau \omega v ~ \varepsilon \rho \gamma о \delta о \tau 兀 \kappa \omega ́ v ~ \varepsilon v ต ́ \sigma \varepsilon \omega v . ~$


 $\sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon \tau \alpha \pi \rho о \eta \gamma \circ v ์ \mu \varepsilon v \alpha$ غ́ $\tau \eta$.
＊To $19 \% \pi \rho о \beta \lambda$ ह́лєı $\tau \eta ~ \rho \eta \tau \eta ́ ~ \mu \varepsilon і ́ \omega \sigma \eta ~ \alpha \pi о \delta о \chi \omega ́ v ~ \sigma \varepsilon ~ \delta ı \alpha ́ \varphi о \rho \alpha ~ \pi о б о б \tau \alpha ́ . ~$

＊Móvo $0,7 \% \tau \omega v$ vé $\omega v ~ \sigma \nu \mu \beta \alpha ́ \sigma \varepsilon \omega v ~ \pi \rho о \beta \lambda \varepsilon ́ \pi \varepsilon ı ~ \alpha v ́ \xi \eta \sigma \eta ~ \alpha \pi о \delta о \chi \omega ́ v . ~$






$\Sigma \varepsilon$ ó, $\tau \imath$ ó $\mu \omega \varsigma ~ \alpha \varphi о \rho \alpha ́ ~ \tau \eta \nu ~ v \pi о \gamma \rho \alpha \varphi \eta ́ ~ \Sigma \Sigma E ~ \mu \varepsilon ́ \sigma \omega ~ \tau о v ~ \theta \varepsilon \sigma \mu о v ́ ~ \tau \omega v ~ \varepsilon v ต ́ \sigma \varepsilon \omega v ~$

 $\mu \varepsilon i ́ \omega \sigma \eta \mu 1 \sigma \theta$ ต́v.
$\Sigma \tau \alpha \nu \varepsilon ́ \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \pi о v ~ \varepsilon ́ \chi о ७ v ~ \delta ı \alpha \mu о \rho \varphi ம \theta \varepsilon i ́ ~ o ́ \sigma о v ~ \alpha \varphi о р \alpha ́ ~ \tau \eta \nu ~ v \pi о ү \rho \alpha \varphi \eta ́ ~ \Sigma \Sigma Е ~ \sigma \varepsilon ~$

 $\varepsilon v \tau o ́ s ~ \tau \eta \varsigma ~ \varepsilon \pi \tau \chi \varepsilon i ́ p \eta \sigma \eta \varsigma, ~ \varepsilon v \omega ́ ~ o ı ~ « \varepsilon v ต ́ \sigma \varepsilon ı \varsigma ~ \pi \rho о \sigma ต ́ \pi \omega v » ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ v \alpha ~ \sigma \nu \sigma \tau \eta ́ v o v \tau \alpha ı ~ к \alpha ı ~ v \alpha ~$



H $\mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau о v ~ O M E \Delta ~ \pi \alpha \rho о v \sigma ı \alpha ́ \zeta \varepsilon ı ~ \chi \alpha \rho \alpha к \tau \eta \rho ı \sigma \tau ı к \alpha ́ ~ o ́ \tau ı ~ o l ~ \varepsilon v ต ́ \sigma \varepsilon ı \varsigma ~ \pi \rho о \sigma \omega ́ \pi \omega v ~$






## 5.4 ПOLOTIKE KAI ПOIOTIKE乏 METABONE TH乏  ЕҮPתПAÏКН'ЕNএธH

 $\kappa \alpha ı$ Eрүабías (Eurofound) $\sigma \chi \varepsilon \tau \iota \kappa \alpha ́ \mu \varepsilon \tau \iota \varsigma ~ \delta ı \alpha \rho \theta \rho \omega \tau \iota \kappa \varepsilon ́ \varsigma ~ \mu \varepsilon \tau \alpha \beta о \lambda \varepsilon ́ \varsigma ~ \sigma \tau \eta \nu ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta ~ \sigma \varepsilon$





 Working Conditions Surveys (EWCS), 2010).





 $\kappa \lambda i ́ \mu \alpha \kappa \alpha$ Ө́́бєตv єрүабías.
 1998-2007, като́ $\pi \varepsilon \rho i ́ \pi о v ~ 4 \varepsilon к \alpha \tau о \mu \mu v ́ \rho ा \alpha ~ \sigma \varepsilon ~ o ́ \lambda \eta ~ \tau \eta \nu ~ Е v \rho ต ́ \pi \eta, ~ \sigma \varepsilon ~ \alpha v \tau i ́ \theta \varepsilon \sigma \eta ~ \mu \varepsilon ~ \tau \eta \nu ~ \pi \varepsilon \rho i ́-~$
 बтоטৎ $\pi \rho \circ \varsigma$ ع $\xi \dot{\varepsilon} \tau \alpha \sigma \eta ~ \delta \varepsilon i ́ \kappa \tau \varepsilon \varsigma . ~$







 $\pi o ́ \lambda \omega \sigma \eta$ ка兀о́ $\tau \eta v$ крíбๆ» (Employment polarisation and job quality in the crisis, 2013).
























 (Employment polarisation and job quality in the crisis, 2013).




















 $\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha, \kappa \alpha \theta \omega ́ s ~ \delta \varepsilon v ~ \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha l ~ \alpha v \tau i ́ \sigma \tau о \chi \chi ~ \delta \eta \mu ı \cup \rho \gamma i ́ \alpha ~ \theta \varepsilon ́ \sigma \varepsilon \omega v ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha s ~ \tau \alpha$ $\pi \rho о \eta \gamma о v ́ \mu \varepsilon v \alpha \chi \rho o ́ v i \alpha$.




 «ұ $\alpha \mu \eta \lambda$ ои́ ки́pov̧».

To $\varepsilon ข \tau ข \pi \omega \sigma \downarrow \kappa o ́ \tau \varepsilon \rho о ~ \sigma \tau о \chi \varepsilon i ́ o ~ \varepsilon i ́ v a ı ~ \eta ~ о v \sigma ı \alpha \sigma \tau ı к \eta ́ ~ \delta ı \alpha \varphi о \rho о \pi о i ́ \eta \sigma \eta ~ \sigma \tau \eta ~$









 $\beta \alpha \theta \mu$ ó (Employment polarisation and job quality in the crisis, 2013).

 $\mu о \rho \varphi \emptyset ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~(\mu о ́ v ı \eta \eta ~ \& ~ \mu \varepsilon \rho ı к ŋ ́ ~ \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta), ~ \alpha v \tau о \alpha \pi \alpha \sigma \chi о ́ \lambda \eta \sigma \eta ~ к \alpha ı ~ \sigma о \mu \beta \alpha ́ \sigma \varepsilon ı \varsigma ~$
 A $\pi \alpha \sigma \chi$ ó $\eta \eta \sigma \eta \varsigma$ (2013) $\alpha v \alpha \varphi \dot{\varepsilon} \rho \varepsilon \iota$ ó $\tau \iota$ (Employment polarisation and job quality in the crisis,










 бтоv кла́סо $\tau \eta \varsigma ~ \pi \lambda \eta \rho о \varphi о \rho \iota \kappa \eta ́ \varsigma$.








 $6 \% \gamma 1 \alpha$ тovs $65+$.







 $\gamma \varepsilon v \varepsilon ́ \tau \varepsilon \varsigma \rho \alpha ́ \varsigma ~ \tau о \cup \varsigma ̧ ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda \lambda \eta ~ \chi \omega ́ \rho \alpha ~ \mu \varepsilon ́ \lambda о \varsigma ~ \tau \eta \varsigma ~ E E ~(6 ~ \varepsilon к \alpha \tau о \mu \mu v ́ \rho ı \alpha) . ~ \Omega \sigma \tau o ́ \sigma o, ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \varepsilon ́ v \alpha \rho \xi ̆ \eta ~$
 $\alpha v \xi \alpha ́ v \varepsilon \tau \alpha 1, \kappa \alpha \tau \alpha ́ ~ \pi \varepsilon \rho i ́ \pi о v ~ 10 \%$, о $\alpha \rho ı \theta \mu o ́ \varsigma ~ \varepsilon \rho \gamma \alpha \zeta о \mu \varepsilon ́ v \omega v ~ \varepsilon \cup \rho \omega \pi \alpha \ddot{\kappa ท ́ \varsigma ~ \pi \rho о \varepsilon ́ \lambda \varepsilon v \sigma \eta \varsigma ~ \pi о v ~}$





 Bé $\lambda \gamma 10$ каı $\eta$ I $\tau \alpha \lambda i ́ \alpha ~ \delta ı \alpha \tau \eta \rho о и ́ v ~ \sigma \tau \alpha \theta \varepsilon \rho \alpha ́ ~ \alpha v \xi ŋ \eta \tau ル \kappa \alpha ́ ~ \pi о \sigma о \sigma \tau \alpha ́ \alpha ~ \varepsilon v ต ́ ~ \eta ~ \varepsilon v ~ \lambda o ́ \gamma \omega ~ к \alpha \tau \eta \gamma о \rho i ́ \alpha ~$
 $\alpha v ์ \xi \eta \sigma \eta ~ \tau \eta \varsigma ~ \alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma$.




 $\kappa \alpha \imath ~ \tau \eta ~ \Lambda \imath \theta o v \alpha v i ́ \alpha . ~ \Sigma \tau \eta \nu ~ O \lambda \lambda \alpha v \delta i ́ \alpha, ~ \mu \alpha ́ \lambda ı \sigma \tau \alpha ~ \sigma \eta ́ \mu \varepsilon \rho \alpha, ~ \tau о ~ 50 \% ~ \tau \omega v ~ \varepsilon \rho \gamma \alpha \zeta о \mu \varepsilon ́ v \omega v ~$






 $\kappa \alpha ı \tau \eta \varsigma$ Е $\lambda \lambda \alpha ́ \delta \alpha \varsigma ~ \kappa \alpha ı ~ \tau \eta \varsigma ~ П о р \tau о \gamma \alpha \lambda i ́ \alpha \varsigma, ~ \sigma \varepsilon ~ \alpha \nu \tau i \theta \varepsilon \sigma \eta ~ \mu \varepsilon ~ \tau \eta \nu ~ \alpha v ́ \xi \eta \sigma \eta ~ \pi о v ~ \pi \alpha \rho \alpha \tau \eta \rho \varepsilon i ́ \tau \alpha ı ~$
 quality in the crisis, 2013).

 $\tau \eta \tau \alpha \mu i ́ \alpha \varsigma ~ \chi \omega ́ \rho \alpha \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ v \alpha ~ \kappa \alpha ́ v \varepsilon ı ~ \mu \varepsilon ~ \tau \eta v ~ \delta ı \alpha ́ \rho \theta \rho \omega \sigma \eta ~ \kappa \alpha ı ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~ \tau o ́ \sigma o ~ \varepsilon \xi ̧ \alpha \rho \tau \eta \mu \varepsilon ́ v \eta ~ \alpha \pi o ́ ~ \tau о ~$






 $\kappa \eta ́ \varsigma ~ E v \omega \sigma \eta \varsigma ~ \alpha \lambda \lambda \alpha ́ ~ \kappa \alpha ı ~ \tau о ~ i ́ \delta ı ~ \tau о ~ \varepsilon v \rho \omega \pi \alpha и ̈ к о ́ ~ о ו к о \delta o ́ ~ \mu \eta \mu \alpha . ~ М \varepsilon ~ \tau \eta \nu ~ \delta ı \alpha \tau \alpha ́ \rho \alpha \xi ̆ \eta ~ \tau \eta \varsigma ~ \sigma \chi \varepsilon ́ \sigma \eta \varsigma ~$









 2001).

##   $\Sigma \mathrm{XE} \Sigma \mathrm{E} \Omega \mathrm{N})$



 $\mu \varepsilon ́ \tau \rho \alpha ~ \pi о v ~ \varepsilon ́ \chi \circ v \nu ~ \psi \eta \varphi เ \sigma \tau \varepsilon ́ ́ ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \varepsilon \pi \varepsilon ́ \kappa \tau \alpha \sigma \eta ~ \tau \eta \varsigma ~ \varepsilon v \varepsilon ́ \lambda ı \kappa \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~ O ı ~ \chi \alpha \mu \eta \lambda \varepsilon ́ \varsigma ~$ $\alpha \mu о ı \varepsilon ́ \varsigma ~ \mu \varepsilon ́ \sigma \alpha ~ \alpha \pi o ́ ~ \tau \eta v ~ \alpha \pi о \delta ı \alpha ́ \rho \theta \rho \omega \sigma \eta ~ \tau о v ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \delta ı \alpha \mu o ́ \rho \varphi \omega \sigma \eta ́ \varsigma ~ \tau о v ̧ ~ \kappa \alpha ı ~ v \pi o ́ ~ \tau \eta \nu ~$ $\pi i ́ \varepsilon \sigma \eta ~ \tau \eta \varsigma ~ \alpha v \varepsilon \rho \gamma i ́ \alpha \varsigma ~ \mu \varepsilon ~ \tau \iota \varsigma ~ \varphi \theta \eta v \varepsilon ́ \varsigma ~ к \alpha ı ~ \varepsilon v ́ к о \lambda \varepsilon \varsigma ~ \alpha \pi о \lambda v ́ \sigma \varepsilon ı \varsigma, ~ к \alpha \theta ı \sigma \tau о и ́ v ~ \alpha \beta \varepsilon ́ \beta \alpha щ \eta ~ \tau \eta \nu$





 $\nu \varepsilon о \varphi \imath \lambda \varepsilon \lambda \varepsilon v ์ \theta \varepsilon \rho \circ v$ ठó $\gamma \mu \alpha \tau \circ \varsigma$.























 $\sigma v v \delta \iota \kappa \alpha ́ \tau \omega v ~ \mu \varepsilon ́ \sigma \alpha ~ \alpha \pi o ́ ~ \tau \eta v ~ \alpha \pi о \delta เ \alpha ́ \rho \theta \rho \omega \sigma \eta ~ \tau \omega v ~ \sigma \nu \lambda \lambda о \gamma ı \kappa ́ ́ v ~ \sigma v \mu \beta \alpha ́ \sigma \varepsilon \omega v ~ к \alpha ı ~ \tau \eta v$


## 6 АIKATIKE А АПОФАЕЕİ ГIA THN AПOPPY@MİH T $\Omega \mathrm{N}$ EPГAГIAK

 єрүабוакต́v бхદ́бєตv.

| ェTOIXEIA | ПРАГМАТІКА | KPİH | TOY |
| :---: | :---: | :---: | :---: |
| АПОФАГНГ | ПЕРІІТАТIKA | $\triangle$ IKAETHPIOY |  |



Про́єброя:
доидүєра́кпร
Avסן $\varepsilon ́ \alpha$,

Eıб $\boldsymbol{\gamma} \gamma \boldsymbol{\eta} \eta \dot{\prime}$ :
Mıбо́ŋ
Avүovגغ́as

ERROR: stackunderflow
OFFENDING COMMAND: exch

STACK:
/_ct_na


[^0]:     к $\alpha \imath \eta \theta$ ィко́.

[^1]:    
    
     $\pi \varepsilon \rho \iota \sigma \sigma о ́ \tau \varepsilon \rho \alpha$ бıкаı$\omega \mu \tau \alpha$.

[^2]:    
    
    
    

[^3]:    
    
    
    
    

[^4]:     $\sigma \alpha \rho \alpha ́ v \tau \alpha(40) \omega \rho \dot{v} \varepsilon \varepsilon \beta \delta \rho \mu \alpha \delta \alpha i ́ \omega \varsigma$.
     $\alpha v \tau \eta ́, \kappa \alpha \tau \alpha ́ \mu \varepsilon ́ \sigma o ~ o ́ \rho o, ~ \sigma \tau о ~ \sigma v \mu \beta \alpha \tau ı к o ́ ~ \omega \rho \alpha ́ p ı ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~$

[^5]:    
    

[^6]:    
    

[^7]:    兀ov คó̀ov $\tau\rceil \varsigma ~ \sigma \eta \mu \varepsilon \rho เ v ฑ ́ \varsigma ~ \tau \varepsilon \chi v o \lambda o \gamma i ́ a \varsigma . ~$
    
    
    
    

[^8]:    
     єрүабías, ßоuдєutés к入л.

[^9]:    
    

[^10]:     $\pi о \sigma о \sigma \tau$ ó $\alpha v \varepsilon \rho \gamma i ́ \alpha \varsigma ~ \tau \omega v ~ v \varepsilon ́ \omega v ~ к \alpha ́ \tau \omega ~ \tau \omega \nu ~ 25 ~ \varepsilon \tau \omega ́ v ~ v \alpha ~ v \pi \varepsilon \rho \beta \alpha i ́ v \varepsilon ı ~ \tau о ~ 60 \% ~ \sigma \tau \eta \nu ~ E \lambda \lambda \alpha ́ \delta \alpha, ~ \tau о ~ 55 \% ~ \sigma \tau \eta \nu ~ I \sigma \pi \alpha v i ́ \alpha, ~$
    

[^11]:    
    
    

[^12]:    
    
    

