# TEXNOАОГIKO ЕКПАIДEYTIKO IДPYMA МЕГОАОГГIOY ПАРАРТНМА NАYПАКТОY <br> TMHMA THAEПIKOINQNIAK $\Delta I K T Y \Omega N$ 



## ПТYХIAKH ЕРГАЕIA

$\Delta 1 \alpha \sigma v ́ v \delta \varepsilon \sigma \eta$ $\sigma \tau \alpha \theta \mu$ оv́ $\beta \alpha ́ \sigma \eta \varsigma ~ \kappa ı \nu \eta \tau \eta ́ \varsigma ~ \tau \eta \lambda \varepsilon \varphi \omega v i ́ \alpha \varsigma ~ \mu \varepsilon$ тo $\delta i ́ \kappa \tau v o$ $\mu \varepsilon ́ \sigma \omega$ Fiber to the BTS site

В $\lambda$ ázov П. В $\alpha \sigma ı \lambda ı к \eta ́ ~$

Aрı $\theta \mu$ о́¢ Мףт $\rho$ ต́оv: 653

Елı $\beta \lambda \varepsilon ́ \pi о \nu \tau \varepsilon \varsigma \kappa \alpha \theta \eta \gamma \eta \tau \varepsilon ́ \varsigma:$



Nаv́лактоя, 30/04/2013

ЕПІТРОПН АЕІО $\Lambda О Г Н \Sigma Н \Sigma$
1.
2.
3.

## Ev $\alpha \rho ı \sigma \tau i ́ \varepsilon$





 Оєкогоно́ко
 M\&тóסooŋๆ $\tau \eta \varsigma$ COSMOTE Mobile Telecommunications S.A., $\pi 0 v \pi \rho o ́ \tau \varepsilon i v \varepsilon ~ \tau \eta$
 тоv Лоик人́ $\mathrm{B} \lambda \alpha \dot{\chi} о ~ \pi о v ~ \alpha v \varepsilon ́ \lambda \alpha \beta \varepsilon ~ v \alpha ~ \mu \varepsilon ~ \beta о \eta \theta \eta ́ \sigma \varepsilon ı . ~ I \delta ı \alpha i ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \varepsilon v \chi \alpha \rho ı \sigma \tau i ́ \varepsilon \varsigma ~ \theta \alpha ~ \eta ́ \theta \varepsilon \lambda \alpha ~ v \alpha ~$

















 $\sigma \cup \gamma \gamma \varepsilon \nu \varepsilon i ́ s ~ ŋ ́ ~ \kappa \alpha ı ~ \alpha \pi \lambda \alpha ́ ~ \gamma v \omega \sigma \tau \circ v ́ \varsigma ̧ . .$.

А $\varphi$ є $\rho \omega \mu \varepsilon ́ v \eta ~ \sigma \tau о \nu ~ \alpha \delta \varepsilon \rho \varphi о ́ ~ \mu о v ~ ' А к \eta . ~$
"Н лó $\lambda \eta$ б $\alpha v \kappa \alpha \rho \alpha ́ \beta ı ~ \tau \alpha ~ \varphi ต ́ \tau \alpha ~ \tau \eta \varsigma ~ \alpha v \alpha ́ \beta \varepsilon ı \ldots . . \gamma ı \rho \tau \eta ́ . . . ~$



## ПгрєєХо́ $\mu \varepsilon \boldsymbol{v}^{\alpha}$

Euxapıбtiદя ..... 3
Пعрıєхо́ $\mu \varepsilon \vee \alpha$ ..... 6
Пívaкая Eıкóvшv ..... 9
Пєрі́ $\lambda \eta \psi \eta$ ..... 11
Abstract ..... 12
Eıoаүшүท́ ..... 13
КЕФА＾AIO 1 －OПTIKH TEXNO＾OГIA ..... 14
İTOPIKA ミTOIXEIA ..... 14
$\triangle O M H$ OПTIKH乏 INA乏： ..... 15
ПАРАГОNТЕГ ПЕРIOPI¿MOY OПTIK $\Omega N$ ZEYミEßN ..... 16
ФАГМАТІКА ПАРАЄҮРА ..... 17
KEФA＾AIO 2 －FTT－BTS site ..... 19
乞КОПО乏 TOY $\triangle$ IKTYOY ..... 19
MW vs FIBER ..... 20
ТОПОЛОГІА ҮПОДОМНГ КАІ ТЕХNO＾ОГІА ПРОГВА乞Н乏 ..... 24
Толодоүі́а Үтобони́я ..... 24
Tعגvo入oүía Про́бßабŋऽ ..... 26
KEФA＾AIO 3 －KATA乏KEYA乏TIKH ME ..... 30
ЕПІЛОГН ГTAӨM $\Omega$ N BA乏H乏 ..... 32
KOETO乏 KATA乏KEYH乏 ..... 33
 ..... 35
ФPEATIA ..... 35
ТАФРОІ ..... 38
ГЕNIKE П ПООІАГРАФЕ $\Sigma \Sigma \Omega \wedge H N \Omega N$ ..... 41
КА＾এДIA КАІ ОПТІКН INA ..... 43
MHXANIKA ХAPAKTHPI乏TIKA KAI XAPAKTHPI乏TIKA ПEPIBA＾＾ONTO乏 KA＾』ロIOY ..... 47
BA乏IKA ХАРАКТНРІГTIKA MONOTPOПЛN OПTIK $\Omega N$ IN $\Omega N$ ..... 48
КЕФА＾AIO 5 －TPOПOI TEPMATIミMOY ..... 49
ПРОГBA乏H $\Sigma$ TA MHXANHMATA ..... 50
TEPMATI乏MO乏 KAI $\triangle I A \Sigma Y N \Delta E \Sigma H$ OחTIK $\Omega N$ IN $\Omega N$ ..... 55
OחTIKO乏 KATANEMHTH乏－ODF ..... 55
KEФAへAIO 6 －METPH乏Eİ ..... 62
OTDR ..... 62
I ..... 68
MEлETH LINK POWER BUDGET TH乏 OПTIKH乏 $\Delta I A \Delta P O M H \Sigma$ ..... 69
ҮП О＾ОГI乏MO乏 OPTICAL POWER BUDGET： ..... 70
KEФA＾AIO 7 －AS BUILT DOCUMENTATION ..... 71
КЕФАААІО 8 －ЕПІВ $\wedge$ Е $\Psi Н$ ..... 75
RTU ..... 75
NQMS ..... 75
OSPInSight ..... 77
КЕФАААІО 9 － －ІЕПАФН IUB ..... 78
TI EINAI H $\triangle$ IЕПАФН IUB ..... 78
¿TOXOI KAI＾EITOYPГIE ..... 79
XAPAKTHPI乏TIKA IUB $\triangle$ IЕПАФН乏 ..... 80
Avtıotoíxıఠŋ t $\omega v$ poćv $\delta \varepsilon \delta o \mu \varepsilon ́ v \omega v ~ \tau \eta \varsigma ~ l u b ~$ ..... 80
Пршто́ко $\lambda \lambda \alpha$ тпऽ lub ..... 82
 ..... 85
APXITEKTONIKH $\triangle$ IEПАФН $\Sigma$ IUB ..... 86
QoS ..... 87
IP addressing ..... 88
IPBR ..... 89
Хроvотроүраниатьбно́я（Scheduling） ..... 90
DiffServ DSCP mapping ..... 92
ПАРАМЕТРОПОIH乏H KINHさH乏（TRAFFIC PARAMETERIZATION） ..... 95
ГҮМПЕРАГМАТА－ПРООПТІКЕГ ..... 100
ПАРАРТНМА 1 －MHXANHMATA $\triangle$ IKTYOY ..... 101
ПАРАРТНМА 2 －OПTIKEट KAPТЕГ． ..... 104
ХАРАКТНРI¿TIKA OПTIK $\Omega N$ KAPTתN TOY $\triangle I K T Y O Y: ~$ ..... 104
ПАРАДЕІГМАТА ОПТІКЛN КАРТЛN TOY $\triangle I K T Y O Y: ~$ ..... 105
ПАРАРТНМА 3 －METPH乏EI乏 OTDR ..... 107
ПАРАРТНМА 4 ..... 110
METPHEH LINK POWER BUDGET ..... 110
ПАРАРТНМА 5 - OSPInSight ..... 111
ВІВЛІОГРАФІА ..... 112
โYNTOMOГРАФІЕ乏 ..... 113

## Пívaкаऽ Eıкóvตv

Eıко́va 1：$\Delta เ \alpha ́ \tau \alpha \xi \eta ~ \mu о v o ́ t \rho о \pi \omega v ~ к \alpha ı ~ \pi о \lambda u ́ \tau \rho о \pi \omega v ~ о \pi \tau \iota к \omega ́ v ~ ı v \omega ́ v ~$ ..... 15
 ..... 17
Eıкóva 3：Apxıtєктоvıки́ tou סıктúou $\mu \alpha \varsigma$ ． ..... 20
Eıкóva 4：Тото入оүía Point to Point ..... 24
Eıко́va 5：Тото入оүía Ring ..... 25
Eıко́va 6：H тото入оүía tou סıктúou $\mu \alpha$ s ..... 31
 ..... 36
 ..... 37
Еккóva 9：Екбкафท́ тáфроu ..... 39
Eıкóva 10：Touń táфроu ..... 40
Eıкóva 11：Фuбเкท́ $\mu$ орфท́ б $\omega \lambda$ ท́v $\alpha$ ..... 42
 ..... 43
Eıкóva 13：Tо $\quad$ и́ ка入 $\omega \delta$ iou ..... 44
Eıкóva 14：Про́бß $\alpha \sigma \eta$ ота $\mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha(\alpha)$ ..... 50
Eıóva 15：Прó $\beta \beta \alpha \sigma \eta$ бта $\mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha$（ $\beta$ ） ..... 51
Eıкóva 16：Прó $\beta \beta \alpha \sigma \eta$ бт $\alpha \mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha(\gamma)$ ..... 52
Eıкóva 17：Про́бßaбף бта $\mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha(\delta)$ ..... 53
Eเкóva 18：Про́бß $\alpha \sigma \eta$ бта $\mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha(\varepsilon)$ ..... 54
Eıкóva 19：Про́бßабп бта $\mu \eta \chi \alpha v \grave{\mu \alpha \tau \alpha ~(\sigma \tau) ~}$ ..... 54
 ..... 58
 ..... 58
 ..... 59
 ..... 59
 ..... 59
Eıкóva 25：¿uvסєtńpas． ..... 60
Eıкóva 26：£uそદuктńs． ..... 61
Ekкóva 27：Mn犭ávqu $\operatorname{OTDR}(\alpha)$ ..... 63
Eıкóva 28：Mn犭ávŋ $\mu \alpha$ OTDR（ $\beta$ ） ..... 63
 ..... 64
Elкóva 30：NQMS ..... 76
Eıкóva 31：$\Delta$ เєлафท́ lub ..... 78
Eıкóva 32：Пршто́ко $\lambda \lambda \alpha$ тп̧ lub ..... 82
Eıкóva 33：Iub apxıtєктоvıкท́ ..... 86
Eıкóva 34：Avtıotoíxıoŋ PHB ..... 87
 ..... 90
Eıкóva 36：Xроvотроүран $\alpha$ тьоно́я ..... 91
Ekóva 37：CAC \＆Shaping（downlink） ..... 98
Eıкóva 38Q CAC \＆Shaping（uplink） ..... 98
 ..... 101
Eıкóva 40：Oттєкós катаvєرŋтп́s $\sigma \varepsilon$ hub（ $\beta$ ） ..... 102
 ..... 103
 ..... 103
Еוкóva 43: Характпрıбтıка́ оттєкผ́v картผ́v ..... 104
Eıко́v $\alpha$ 44: Oттıкท́ ка́ $\rho \tau \alpha$ ( $\alpha$ ) ..... 105
Eıкóva 45: Олтıкท́ ка́рта ( $\beta$ ) ..... 105
Eıкóva 46: Ođтıкท́ ка́рта ( $\gamma$ ) ..... 106
Eıко́vа 47: Oлтıкท́ ка́рта ( $\delta$ ) ..... 106
Eккóva 48: Мદ́трŋбף OTDR (1319nm) ..... 107
Eıкóva 49: Eıкóva 45: Métpŋoŋ OTDR (1558nm) ..... 108
Eıкóva 50: Eıкóva 45: Métрŋণๆ OTDR (1620nm) ..... 109
Eıкóva 51: Métрŋoŋ Link Power Budget ..... 110
Eıкóva 52: OSPInSight ..... 111

## Пгрі́入ך廿ך



 ภíkтvo oлtıкต́v $\mathfrak{\text { vóv. }}$

इто $\pi \rho \omega ́ \tau о ~ \mu \varepsilon ́ \rho o s ~ \pi \alpha \rho о v \sigma ı \alpha ́ \zeta \varepsilon \tau \alpha ı ~ о ~ \tau \rho о ́ \pi о \varsigma ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu о v ́ ~ к \alpha ı ~ v \lambda о \pi о і ́ \eta \sigma \eta \varsigma ~ \alpha v \tau о v ́ ~ \tau о v ~$













## Abstract

This piece of writing deals with the interconnection of "COSMOTE Telecommunications S.A." BTSs with the core network via optical fibers in urban and greater area environment of Athens and Attica prefecture. This interconnection is possible due to the decision of backhauling of 3G Transport nodes over a private optical network.

In the first part the planning and construction part of this venture is presented, from the very first steps of specification definitions, up to the final delivery and acceptance of the project. After a brief introduction in optical technology, the reasons for the development of such a network are analyzed in strong comparison with the performance of existing MW transport. The Access technology issues of our optical network are studied as well. Moreover the construction specifications and the fiber's termination methods are underlined which in addition to suitable measurements ensures the best quality for our network.

In the final part a detailed analysis of Iub interface (the one that carries in full mode all the necessary information between a Node B and its RNC) is exhibited.

This is the interface that uses our optical network the most - either as direct backhauling of the Node Bs, or mainly as backhauling od 3G Transport Nodes - and in our analysis the most important feature od Iub QoS is enlightened.

## Eı $\sigma \alpha \gamma \omega \gamma \eta$


 $\kappa ı v \eta \tau \varepsilon ́ \varsigma ~ \varepsilon \pi ル \kappa o v \omega \omega v i ́ \varepsilon \varsigma ~(\pi \chi . ~ L T E, ~ L T E ~ A d v a n c e d) ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho o v v ~ v \psi \eta \lambda o ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \tau \alpha \chi ט ́ \tau \eta \tau \varepsilon \varsigma$,





 $\tau \omega v \chi \rho \eta \sigma \tau \dot{\omega} \nu \mu \alpha$.

 $\mu \varepsilon \gamma \alpha ́ \lambda o v \varsigma ~ к \alpha ı ~ \sigma \eta \mu \alpha v \tau ı \kappa о v ́ \varsigma ~ \sigma \tau \alpha \theta \mu о v ́ s ~(\alpha \pi o ́ ~ \tau \eta v ~ \sigma к о \pi ı \alpha ́ ~ \tau \eta \varsigma ~ \chi \omega \rho \eta \tau ı к o ́ \tau \eta \tau \alpha \varsigma ~ к \alpha ı ~ \tau \eta \varsigma$


 Елıл


 tous.

## КЕФАААІО 1

## ОПТІКН TЕХNО^ОГІА

## İTOPIKA $\mathbf{\Sigma T O I X E I A}$







 1990.
 $\varepsilon v \sigma ט ́ \rho \mu \alpha \tau \eta \varsigma ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta s ~ \kappa \alpha l ~ \chi \rho \eta \sigma \mu о \pi о ю o v ́ v \tau \alpha l ~ \sigma \varepsilon ~ o ́ \lambda \alpha ~ \tau \alpha ~ \sigma ט ́ \gamma \chi \rho o v \alpha ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha$




## $\Delta$ OMH OПTIKH工 INAE:










1. Пoגút $\rho o \pi \varepsilon \varsigma ~ i ́ v \varepsilon \varsigma ~(M u l t i ~ M o d e ~ F i b e r, ~ M M F): ~ к о \mu \alpha \tau о \delta \eta \gamma o v ́ v ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho o v s ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha v ~$

2. Movótpotec ivec (Single Mode Fiber, SMF): кv $\mu \alpha \tau o \delta \eta \gamma o v ́ v ~ \varepsilon ́ v \alpha ~ \mu o ́ v o ~ \rho v \theta \mu o ́ ~ к \alpha ı ~ \eta ~$



 $\alpha v \alpha \varphi \varepsilon ́ \rho о \nu \tau \alpha \iota ~ \sigma \varepsilon \varepsilon \pi о ́ \mu \varepsilon v o ~ \kappa \varepsilon \varphi \alpha ́ \lambda \alpha ı$.

## ПАРАГОNTE ПЕРIOPILMOY OПTIKЛN ZEYЕЕЛN

## Aло́ $\sigma \varepsilon \sigma \eta:$





## $\Delta l \alpha \sigma \pi \sigma \rho \alpha ́:$

 $\mu \varepsilon ́ \sigma o . ~ А \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \alpha v \tau о v ́ ~ \varepsilon i ́ v \alpha l ~ o l ~ \delta ı \alpha \varphi о \rho \varepsilon \tau ı к \varepsilon ́ \varsigma ~ \tau \alpha \chi ט ́ \tau \eta \tau \varepsilon \varsigma ~ \delta เ \alpha ́ \delta o \sigma \eta \varsigma ~ \gamma l \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \mu \eta ́ \kappa о \varsigma . ~$


 $\varepsilon \pi \eta \rho \varepsilon \alpha ́ \sigma \varepsilon \iota ~$ то $\lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v o ~ \sigma \eta ́ \mu \alpha ~ \kappa \alpha ı ~ v \alpha ~ \pi \rho о к \alpha \lambda \varepsilon ́ \sigma \varepsilon ı ~ \sigma \varphi \alpha ́ \lambda \mu \alpha \alpha \tau \alpha ~ \sigma \tau \eta ~ \mu \varepsilon \tau \alpha ́ \delta о \sigma \eta, ~ \alpha \varphi о v ́ ~$






## 

- Avto $\begin{gathered}\alpha \mu о ́ \rho \varphi \omega \sigma \eta ~ Ф \alpha ́ \sigma \eta ร ~\end{gathered}$
- Eтєробıаио́р甲юбп Фáбпร
- Míそ 4 Ф $\omega \tau$ oví $\omega v$
- $\Sigma \kappa \varepsilon ́ \delta \alpha \sigma \eta$ Raman
- $\Sigma \kappa \varepsilon ́ \delta \alpha \sigma \eta ~ B r i l l o u i n ~$


## ФАЕМАТІКА ПАРАӨҮРА







 $\pi \eta \gamma \varepsilon ́ \varsigma ~ \mu \varepsilon ~ \beta \alpha ́ \sigma \eta ~ \tau о ~ \pi \cup \rho i ́ t ı ~ \sigma \varepsilon ~ \alpha v \tau o ́ . ~ ' O \mu \omega \varsigma ~ к и \rho ı \alpha \rho \chi \varepsilon i ́ ~ \eta ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \alpha \pi o ́ \sigma \beta \varepsilon \sigma \eta ~ к \alpha ı ~$







Е $\mu \varepsilon i ́ \varsigma ~ \sigma \tau о ~ \delta i ́ к \tau v o ́ ~ \mu \alpha \varsigma ~ \chi \rho \eta \sigma \mu о \pi о ъ о v ́ \mu \varepsilon ~ \tau о ~ \delta \varepsilon v ́ \tau \varepsilon \rho о ~ к \alpha ı ~ \tau о ~ \tau \rho i ́ \tau о ~ \varphi \alpha \sigma \mu \alpha \tau ı к о ́ ~ \pi \alpha \rho \alpha ́ \theta v \rho о . ~$

## КЕФАААІО 2

## FTT-BTS site





 $\tau \eta \lambda \varepsilon \pi \imath \kappa о \imath v \omega v ı \alpha \kappa о v ́ \pi \alpha ́ \rho о \chi o v$.
 $\alpha \pi о \kappa \alpha \lambda \varepsilon \varepsilon^{\prime} \alpha_{1}$ Fiber to the Mobile Site (FTT-Ms).

## ェКОПO乏 TOY $\triangle$ IKTYOY





 Legacy (TDM/ATM) $\tau \varepsilon \chi v o \lambda o \gamma i ́ \varepsilon \varsigma ~ \sigma \varepsilon$ IP, oঠŋ́ $\gamma \eta \sigma \varepsilon ~ \sigma \tau \eta ~ \sigma \tau \rho \alpha \tau \eta \gamma \iota к \eta ́ \alpha \pi o ́ \varphi \alpha \sigma \eta ~ 3 \chi \rho o ́ v 1 \alpha$


 б $\left.\left.\mu \varepsilon \varepsilon^{\alpha} \alpha \alpha \pi o ́ ~ \sigma \eta \mu \varepsilon i ́ \alpha ~ \pi \alpha \rho о v \sigma i ́ \alpha \varsigma ~ O T E\right]\right) . ~$


Eıкóva 3: Apхıєєктоvıкท́ тоu סıкти́ou $\mu \alpha \varsigma$

## MW vs FIBER


 Ethernet capabilities) ó oo кaı $\delta \varepsilon \cup \tau \varepsilon \rho \varepsilon v o ́ v \tau \omega \varsigma ~ \tau o ~ b a c k h a u l ~ \mu \varepsilon \mu о v \omega \mu \varepsilon ́ v \omega \nu ~ \Sigma B ~ \pi о \lambda v ́ ~$







 бто $\alpha \pi \omega ́ \tau \varepsilon \rho о ~ \mu \varepsilon ́ \lambda \lambda о v ~ \kappa \alpha ́ v o v \tau \alpha ́ \varsigma ~ \tau o ~ \delta v \sigma \kappa о \lambda o ́ \tau \varepsilon \rho o ~ \gamma 1 \alpha ~ \tau o v \varsigma ~ o p e r a t o r s ~ v \alpha ~ \varepsilon ́ \chi o v v ~$







 $\kappa \varepsilon ́ \rho \delta \eta \eta$ тодv́ $\pi ю$ о́ $\mu \varepsilon \sigma \alpha ~ \sigma \tau \eta \nu \varepsilon \tau \alpha \iota \rho \varepsilon i ́ \alpha$.
 $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ 6 ~ б \eta \mu \varepsilon i ́ \alpha: ~$

- $\mathrm{X} \omega \rho \eta \tau \iota \kappa o ́ \tau \eta \tau \alpha$
- $\operatorname{Pv} \theta \mu \iota \sigma \tau ו \kappa \eta ́ ~ \alpha \rho \chi \eta ́ ~$

- Мор甲одоүía $\varepsilon \delta \dot{\alpha} \varphi о$ оя




## 1.Х $\omega \rho \eta \tau \iota \kappa o ́ \tau \eta \tau \alpha$



 $v \varphi i ́ \sigma \tau \alpha \tau \alpha 1, \alpha \varphi о v ́ \mu \varepsilon \tau \eta \nu \pi \rho \lambda \nu \pi \lambda \varepsilon \xi \neq \alpha$ Wave Division Multiplexing (WDM) $\eta$



## 2.Pv日ulбтık'́ $\alpha \rho \chi \dot{\prime}$

 - Operational Expenses).

- 'Evaç олтıкó̧ $\delta \alpha \kappa \tau v ́ \lambda ı o ̧ ~ \alpha \pi \alpha ı \tau \varepsilon i ́ ~ \alpha \gamma о \rho \alpha ́ ~ \delta ı к \alpha ı \omega \mu \alpha ́ \tau \omega v ~ \varepsilon \pi i ́ ~ \tau \omega v ~ \delta \rho o ́ \mu \omega v, ~ \varepsilon v ஸ ́ ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~$



## 







## 4.Mop $\varphi о \lambda o \gamma i ́ \alpha ~ \varepsilon \delta \dot{\alpha ́ \varphi o v ธ ~}$

 о́ $\mu \omega \varsigma$ олтьки́ $\varepsilon \pi \alpha \varphi \eta ́ \tau \omega \nu 2 \alpha \dot{\alpha} \kappa \rho \omega \nu$.




## 



 $\xi \alpha v \alpha \chi \rho \eta \sigma \mu о \pi о џ \eta$ Өóv.

## 






 тоv̧ $\delta \omega ́ \sigma о \cup \mu \varepsilon ~ \pi \rho \omega \tau \varepsilon v ́ o v \sigma \alpha ~ \delta \kappa \alpha \delta \rho о \mu \eta ́ ~ \tau \eta \nu ~ о л \tau 七 к \eta ́ ~ i ́ v \alpha, ~ \eta ~ о л о i ́ \alpha ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho \varepsilon є ~ \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~$




 tous.

## 

## Тотодоүí $\alpha$ צтобоиŋ́S

 ол兀ルкย́ ívยऽ．

 ठv́o．$\Sigma \tau \eta v$ ovđí $\alpha$ ，$\varepsilon$ ívaı $\mu i ́ \alpha$ $\sigma v ́ v \delta \varepsilon \sigma \eta ~ \alpha \pi o ́ ~ \sigma \eta \mu \varepsilon i ́ o ~ \sigma \varepsilon ~ \sigma \eta \mu \varepsilon i ́ o ~(P 2 P, ~ P o i n t-t o-P o i n t) ~ \eta ~$





 $\varphi \omega \tau о \gamma \rho \alpha \varphi i ́ \varepsilon \varsigma \tau \omega v \mu \eta \chi \alpha v \eta \mu \alpha ́ \tau \omega \nu$ тоv $\delta ı \kappa \tau$ v́ov．


Eıкóva 4：Толо入оүí $\alpha$ Point to Point


Eıко́va 5: Тололоүí $\alpha$ Ring




 $\tau \varepsilon \rho \mu \alpha \tau \iota \alpha \alpha ́ ~ \sigma \eta \mu \varepsilon i ́ \alpha ~ \tau \eta \varsigma ~ \kappa i ́ v \eta \sigma \eta \varsigma ~ \kappa \alpha ı ~ \eta ~ к i ́ v \eta \sigma \eta ~ o \delta \varepsilon v ́ \varepsilon ı ~ \varepsilon v ~ \varepsilon i ́ \delta \eta ~ L o a d ~ B a l a n c i n g ~ \kappa \alpha ı ~ \alpha \pi o ́ ~$ $\tau \iota \varsigma ~ \delta v ́ o ~ \delta ı \alpha \delta \rho о \mu \varepsilon ́ \varsigma ~ \tau о v ~ \delta \alpha \kappa \tau \nu \lambda i ́ o v ~(\mu \varepsilon ́ \sigma o ~ \tau \omega v ~ M P L S ~ T u n n e l s) . ~ М \varepsilon ~ \tau \eta v ~ \pi \imath \theta \alpha v \eta ́ ~$






## 






 QoS) $\sigma \varepsilon \varphi \omega v ŋ ́ ~ \kappa \alpha ı$ video.

PON












 $\beta$ ро́qо.



- E $\xi \alpha \lambda \varepsilon i ́ \varphi o v \nu ~ \tau \eta \nu ~ \alpha v \alpha ́ \gamma \kappa \eta ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \pi о \lambda v \pi \lambda \varepsilon \kappa \tau \omega ́ v ~ \kappa \alpha ı ~ \alpha \pi о \pi о \lambda v \pi \lambda \varepsilon \kappa \tau ஸ ́ \omega ~ \sigma \tau \alpha ~ \sigma \eta \mu \varepsilon i ́ \alpha ~$




 $\sigma ט \vee \tau \eta ์ \rho \eta \sigma \eta \mu \varepsilon \lambda \lambda о \nu \tau \iota \kappa \alpha ́$.




## GPON

T $\alpha$ GPON $\pi \rho о \sigma \varphi \varepsilon ́ \rho o v v ~ \pi о \lambda v ́ ~ v \psi \eta \lambda \alpha ́ ~ b i t ~ r a t e s, ~ \varepsilon ́ \omega \varsigma ~ \kappa \alpha ı ~ 2,048 ~ G b p s, ~ \varepsilon v ́ ́ ~ \tau \alpha v \tau o ́ \chi \rho o v \alpha ~$
 $\sigma \varepsilon \alpha \pi \lambda \varepsilon ́ \varsigma \delta ı \alpha \tau \alpha ́ \xi \varepsilon ı \varsigma ~ \kappa \alpha \iota \mu \varepsilon \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \alpha \pi$ оботıкótๆ $\tau \alpha$.

 G.983.x Recommendations $\varepsilon$ ย́ $\sigma \iota$ ต́ $\sigma \tau \varepsilon v \alpha$ عívaı $\sigma v \mu \beta \alpha \tau \alpha ́ \mu \varepsilon$ ó $\lambda \varepsilon \varsigma \varsigma \tau \varsigma \tau \varepsilon \chi v o \lambda 0 \gamma i ́ \varepsilon \varsigma$ PON

 TDM, video, Ethernet, 10/100BASE-T, $\mu \iota \sigma \omega \mu \varepsilon ́ v \varepsilon \varsigma ~ \gamma \rho \alpha \mu \mu \varepsilon ́ \varsigma ~ \kappa \alpha ı ~ \varepsilon \pi \varepsilon \kappa \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \chi \omega \rho i ́ \varsigma ~$

 oı $\pi \varepsilon \rho ı \rho ı \sigma \mu$ ó тоv 甲vбıкои́ $\mu \varepsilon ́ \sigma о v ~ к \alpha ı ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau \eta ~ \lambda о \gamma ı к \eta ́ ~ \alpha \pi o ́ \sigma \tau \alpha \sigma \eta . ~ \Sigma \varepsilon ~ \alpha \nu \tau i ́ \theta \varepsilon \sigma \eta ~ \mu \varepsilon ~$
 20 km ．

Eлıл入દ́ov 七o GPON غ́ $\chi \varepsilon \iota ~ \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~ \delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ o ́ \sigma o v ~ \alpha \varphi о \rho \alpha ́ ~ \sigma \tau \iota \varsigma ~ \lambda \varepsilon ı \tau о v \rho \gamma i ́ \varepsilon \varsigma ~$ $\alpha v \alpha ́ \pi \tau \cup \xi \eta \varsigma, \pi \rho o ́ \beta \lambda \varepsilon \psi \eta \varsigma ~ \kappa \alpha ı ~ \delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta \varsigma ~ \tau о v ~ \delta ı \kappa \tau v ์ o v ~ \varepsilon v ต ́ ~ \pi \alpha \rho \varepsilon ́ \chi \varepsilon ı ~ \kappa \alpha ı ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha ~ \sigma \varepsilon ~$
















 ATM．Avtó عíval $\varepsilon \varphi \iota \kappa \tau o ́ ~ \varepsilon \pi \varepsilon \iota \delta ŋ ́ ~ \tau o ~ \pi \lambda \alpha i ́ \sigma ı ~(f r a m e) ~ \tau o v ~ \sigma \tau \rho ต ́ \mu \alpha \tau o \varsigma ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma ~$
$\sigma \chi \varepsilon \delta \kappa \alpha ́ \sigma \tau \eta \kappa \varepsilon$ єк vย́ov, $\chi \omega \rho i ́ s ~ v \alpha ~ \beta \alpha \sigma \iota \tau \tau i ́ ~ \sigma \varepsilon ~ \kappa \alpha ́ \pi o l \alpha ~ \eta ́ \delta \eta ~ v \pi \alpha ́ \rho \chi о v \sigma \alpha ~ \delta о \mu \eta ́ ~ \pi о v ~$


 $\pi \rho \omega \tau о ́ к о \lambda \lambda о$ в $\lambda \varepsilon ́ \gamma \chi \circ v \pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma ~ \sigma \tau о ~ \mu \varepsilon ́ \sigma o ~(M A C ~-~ M e d i u m ~ A c c e s s ~ P r o t o c o l) ~ \pi o v ~$




## КЕФАААІО 3

## KATAKE`ATIKH ME^ETH TOצ

## $\triangle$ IKTYOY


 COSMOTE.








 $\alpha \pi о \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ \alpha \sigma \varphi \alpha \lambda \tau о \tau \alpha ́ \pi \eta \tau \alpha \kappa \lambda \pi$.



 $\varepsilon \pi ı \sigma \tau \circ \lambda \varepsilon ́ \varsigma \pi 0 v \alpha \pi \alpha ı \tau \eta \theta \eta \kappa \alpha v$.









Eıкóva 6: Н толо入оүí $\alpha$ тои $\delta \iota к \tau$ บ́ou $\mu \alpha \varsigma$

## ЕПIムОГН ГТА@MЛN BALH






## 



- $\quad \Sigma \eta \mu \alpha v \tau ı \kappa o ́ s ~ \alpha \pi o ́ ~ \pi \lambda \varepsilon \cup \rho \alpha ́ \varsigma ~ к i ́ v \eta \sigma \eta \varsigma ~$
- $\Delta l \alpha \varphi \alpha i ́ v o v \sigma \alpha$ عv́кодŋ $\pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \tau \alpha \mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha$






## Meloveкти́ $\mu \alpha \tau \alpha$ :



- Maкрıá $\alpha \pi o ́ ~ \tau \eta ~ \delta ı \alpha \delta \rho o \mu \eta ́ ~ \tau \eta \varsigma ~ i ́ v \alpha \varsigma ~$

- Пров入ๆца́та $\alpha \delta \varepsilon เ o \delta o ́ \tau \eta \sigma \eta \varsigma$

- Пров入ң́ $\mu \alpha \tau \alpha \mu \varepsilon \pi \varepsilon \rho i ́ o ı к о v \varsigma ~$
- $\Sigma \chi \varepsilon \tau 1 \kappa \alpha ́ ~ v \varepsilon ́ o ̧ ~ \Sigma B ~$




## KOETOE KATALKEYHE








To ко́бто̧ кат $\alpha \sigma \kappa \varepsilon \cup \eta ́ \varsigma ~ \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \varepsilon v \delta \varepsilon ı \kappa \tau ı \kappa \alpha ́ ~ \tau \alpha ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \sigma \tau о \imath \chi \varepsilon i ́ \alpha: ~$

 $\Sigma$ B.




- $\quad \Sigma \omega \lambda \eta \nu \omega ́ \sigma \varepsilon ı \varsigma ~ \eta ́ ~ \kappa \alpha v \alpha ́ \lambda ı \alpha$ ๆ́ $\sigma \chi \alpha ́ \rho \varepsilon \varsigma ~ \gamma 1 \alpha ~ \tau о ~ \alpha v \varepsilon ́ \beta \alpha \sigma \mu \alpha ~ \tau о v ~ \kappa \alpha \lambda \omega \delta i ́ o v ~ \varepsilon ́ \omega \varsigma ~ \tau \eta \nu ~ \tau \alpha \rho \alpha ́ \tau \sigma \alpha ~ \tau о v ~$ ктıрíov.







## КЕФАААІО 4

## ПРОДІАГРАФЕ $\Sigma$ KАТАГКЕГЛN KAI

## ME $\Theta \Delta О$ OI $\Upsilon \Lambda О П O I H \Sigma H \Sigma$

## ФPEATIA


i. $\Delta \downarrow \alpha \kappa \lambda \alpha ́ \delta \omega \sigma \eta / \sigma v \gamma \kappa o ́ \lambda \lambda \eta \sigma \eta \quad \kappa \alpha \lambda \omega \delta i ́ \omega v, \quad \alpha \lambda \lambda \alpha ́ \kappa \alpha \imath \quad \varphi \imath \lambda o \xi \varepsilon v i ́ \alpha ~ \tau \omega v \quad \delta 1 \alpha \tau \alpha ́ \xi \varepsilon \omega v$ $\sigma v \gamma \kappa o ́ \lambda \lambda \eta \sigma \eta \varsigma($ cable splicing) $\dagger \tau \tau \nu \delta 1 \alpha \kappa \lambda \alpha \delta \omega \tau \eta ́ \rho \omega \nu \mu \imath \kappa \rho о \sigma \omega \lambda \eta \nu \omega ́ \sigma \varepsilon \omega \nu$ (microtube
 $\varepsilon \pi ı \tau \varepsilon \cup \chi \theta \varepsilon i ́ ~ \sigma v v \varepsilon ́ \chi \varepsilon 1 \alpha \mu \varepsilon \tau \alpha \xi v ́ ~ \tau \omega v \delta 1 \alpha \delta о \chi \iota \kappa \omega ́ v \tau \mu \eta \mu \alpha ́ \tau \omega v \kappa \alpha \lambda \omega \delta i ́ \omega v$.

iii. $\quad \Sigma \eta \mu \varepsilon i ́ \alpha ~ \gamma 1 \alpha ~ \varepsilon \mu \varphi v ́ \sigma \eta \sigma \eta ~ к \alpha \lambda \omega \delta i ́ o v ~ \eta ́ ~ v \pi ๐ \beta о \eta \forall \eta \sigma \eta ~ \tau \eta \varsigma ~ \varepsilon ́ \lambda \xi \eta \varsigma$.
 ( $\pi . \chi . \alpha \pi о ́ \tau о \mu \varepsilon \varsigma ~ \sigma \tau \rho о \varphi \varepsilon ́ \varsigma ~ \tau о v ~ \delta \rho o ́ \mu о v, ~ \delta i \alpha \sigma \tau \alpha v \rho ต ́ \sigma \varepsilon ı \varsigma ~ \mu \varepsilon \tau \alpha \xi v ́ ~ o \delta ต ́ v ~ \kappa . \tau . \lambda . ~$



$\gamma 1 \alpha$ тๆ้ vлоßоŋ́ $\theta \eta \sigma \eta$ тоv $\pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau о \varsigma ~ \tau \eta \varsigma ~ i ́ v \alpha \varsigma ~ \mu \varepsilon ~ \varepsilon ́ \lambda \xi \eta ~ \eta ́ ~ \varepsilon \mu \varphi v ́ \sigma \eta \sigma \eta, ~ \sigma \varepsilon ~ к \alpha ́ \theta \varepsilon ~$ $\pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta$ દíval $\tau \varepsilon ́ \tau o \imath \varepsilon \varsigma ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~ v \pi о \sigma \tau \eta \rho i ́ \zeta o v \tau \alpha ı ~ \alpha \pi \rho o ́ \sigma \kappa о \pi \tau \alpha ~ o ́ \lambda \varepsilon \varsigma ~ o l ~ \tau \varepsilon \chi \nu ル \kappa ́ \varsigma ~$

 $\mu \kappa \rho о \sigma \omega \lambda \eta \nu ต ́ \sigma \varepsilon \omega v$.





 $\kappa \alpha ́ \theta \varepsilon ~ \varphi \rho \varepsilon \alpha ́ \tau 七 ~ \theta \alpha ~ \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \pi \varepsilon \rho i ́ \sigma \sigma \varepsilon ı \alpha ~ о \pi \tau ı к о v ์ ~ к \alpha \lambda \omega \delta i ́ o v ~ \pi \varepsilon \rho i ́ \pi о v ~ 15-20 m . ~$.
 $\kappa \alpha \tau \alpha ́ ~ \tau \eta ~ \varphi \alpha ́ \sigma \eta ~ \tau \eta \varsigma ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta \varsigma ~ \kappa \alpha \tau \alpha \sigma \kappa \varepsilon \cup \eta ́ \varsigma ~ \kappa \alpha ı ~ \alpha v \alpha ́ \lambda о \gamma \alpha \mu \varepsilon \tau \imath \varsigma ~ \alpha v \alpha ́ \gamma \kappa \varepsilon \varsigma$.


To $\mu \varepsilon ́ \gamma \varepsilon \theta$ ós $\tau 0 \cup \varsigma$ ó $\mu \omega \varsigma$ cív $\alpha \iota \mu \varepsilon \tau \alpha \beta \lambda \eta \tau o ́ ~ \alpha v \alpha ́ \lambda o \gamma \alpha \mu \varepsilon:$

 кобтi̧̧ı $\kappa \alpha l ~ \sigma \varepsilon ~ \chi \rho o ́ v o ~ \kappa \alpha l ~ \sigma \varepsilon ~ \chi \rho \eta ́ \mu \alpha \tau \alpha . ~$













## ТАФРОI


 ITU-T L. 48 L. 35 (CCITT outside plant technologies for public networks), то олоі́о



 $\alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \alpha \pi o ́ ~ \alpha ́ \xi о v \varepsilon \varsigma ~ o \delta \omega ́ v, ~ \pi \alpha \rho \alpha \tau \eta \rho \eta ́ \sigma \varepsilon ı \varsigma, ~ к . \tau . \lambda.) . ~$


 $\sigma \chi \varepsilon \delta \iota \alpha \sigma \tau \varepsilon i ́ ~ \gamma ı \alpha ~ \chi \rho \eta ́ \sigma \eta ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta \nu \pi o ́ \lambda \eta ~ \kappa \alpha ı ~ \varepsilon \lambda \alpha \chi ı \tau \tau о \pi о \iota о v ́ v \tau \eta \nu \varphi \theta$ оро́ $\kappa \alpha \iota \tau \eta \nu$ ó $\lambda \lambda \eta \sigma \eta$.


 $\varepsilon \kappa \sigma \kappa \alpha \varphi \eta ́ \varsigma . ~ М \varepsilon ~ \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta ~ \tau о v ~ \mu \eta \chi \alpha v \eta ́ \mu \alpha \tau о \varsigma ~ \alpha v \tau о v ́ ~ \alpha \pi о \varphi \varepsilon ט ́ \gamma \varepsilon \tau \alpha \iota ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~ \alpha ́ \lambda \lambda \omega v$



 $\varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon ६ \varsigma$.


 סı $\alpha v o i ́ \gamma o v \tau \alpha 1, ~ « \kappa \lambda \varepsilon i ́ v o v v » ~ \varepsilon v \tau o ́ s ~ \tau o v ~ \chi \rho o ́ v o v ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \kappa \alpha ı ~ \pi \alpha \rho \alpha \delta i ́ \delta o v \tau \alpha ı ~ \sigma \tau \eta \nu$


 epyaбıஸ́v.



 $\pi \varepsilon \zeta о \delta \rho о \mu i ́ o v ~ \eta ́ ~ \chi \omega ́ \mu \alpha) . ~$


Еıкóva 9: Екокафท́ тáфроu

К $\alpha \tau \alpha ́ \mu \eta ́ \kappa о \varsigma ~ \tau \eta \varsigma ~ \delta ı \alpha \delta \rho о \mu \eta ́ \varsigma ~ \kappa \alpha ı ~ \kappa \alpha ́ \theta \varepsilon ~ 1000 m ~ \pi \varepsilon \rho i ́ \pi о v ~ к \alpha \tau \alpha \sigma \kappa \varepsilon \cup \alpha ́ \sigma \tau \eta \kappa \alpha \nu ~ \varphi \rho \varepsilon \alpha ́ \tau ı \alpha ~ \gamma ı \alpha$ $\tau \eta v \sigma ט ́ v \delta \varepsilon \sigma \eta \eta \tau \omega v \kappa \alpha \lambda \omega \delta i ́ \omega v$, ó $\pi \omega \varsigma \alpha v \alpha \lambda \nu ́ \varepsilon \tau \alpha l ~ \sigma \varepsilon \varepsilon \pi o ́ \mu \varepsilon v \eta \pi \alpha \rho \alpha ́ \gamma \rho \alpha \varphi о$.

## 

 $\pi \varepsilon \rho \iota \pi \tau \omega ́ \sigma \varepsilon \iota \varsigma:$

- Пعఢ̆обро́ $\mu 1 \alpha$

- EӨvıкó каı عларұıккó oठıкó סíктvo $\mu \varepsilon \alpha \sigma \varphi \alpha \lambda \tau o ́ \sigma \tau \rho \omega \sigma \eta$




 $\sigma \omega \lambda \eta ́ v \alpha$.
- $\Sigma \omega \lambda \eta ์ \nu \varepsilon \varsigma ~ \theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \imath \imath \alpha$ $\varepsilon \gamma \kappa \iota \beta \omega \tau \iota \sigma \tau \circ$ v́v $\sigma \varepsilon \sigma \kappa \cup \rho o ́ \delta \varepsilon \mu \alpha$.
- Oı $\sigma \omega \lambda \eta ́ v \varepsilon \varsigma ~ \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \tau о \pi о \theta \varepsilon \tau \eta \theta o v ́ v ~ 5 c m ~ \pi \alpha ́ v \omega ~ \alpha \pi o ́ ~ \tau о v ~ \pi \nu \theta \mu \varepsilon ́ v \alpha ~ к \alpha ı ~$













## ГЕNIKE ПРОДIАГРАФЕ $\Sigma \Omega \Omega \Lambda \mathbf{N} \Omega \mathbf{N}$

Oı $\sigma \omega \lambda \eta ́ v \varepsilon \varsigma ~ \theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~ \alpha \pi o ́ ~ \pi o \lambda v \alpha ı \bullet \cup \lambda \varepsilon ́ v ı o ~(H i g h ~ D e n s i t y ~ P o l y e t h y l e n e, ~$



## Eıкóva 11: Фибเкท́ $\mu \circ \rho ф \eta ́ ~ \sigma \omega \lambda \eta ́ v \alpha$




- $\Theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha \alpha \nu \tau \varepsilon ́ \chi O v v ~ \sigma \varepsilon ~ \pi i ́ \varepsilon \sigma \eta$ í $\sigma \eta \mu \varepsilon$ 8Atm.




## 1. H $\varepsilon \pi \omega v v \mu i ́ \alpha$ "COSMOTE"

2. $Н \mu \varepsilon \rho о \mu \eta v i ́ \alpha ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma ~ \tau о v ~ \sigma \omega \lambda \eta ́ v \alpha$ ( $\eta \mu \varepsilon ́ \rho \alpha / \mu \eta ́ v \alpha \varsigma / \varepsilon ́ \tau \circ \varsigma)$
3. H $\varepsilon \pi \omega v v \mu i ́ \alpha ~ \pi \rho о \mu \eta \theta \varepsilon v \tau \eta$





## KA^תدIA KAI OПTIKH INA




 $\mu i ́ \alpha$ íva $\pi \lambda \dot{\prime} \rho o v s ~ \varphi \alpha ́ \sigma \mu \alpha \tau о \varsigma(1260 \mathrm{~nm}-1625 \mathrm{~nm})$ к $\alpha ı \mu \varepsilon \chi \alpha \mu \eta \lambda$ ó water peak.



1. 24 เvóv
2. $48 \mathrm{\imath vóv}$


To калө́ $\delta$ ı $\alpha \nu \eta ́ \kappa \varepsilon ı ~ \sigma \tau \eta \nu ~ к \alpha \tau \eta \gamma о р i ́ \alpha ~ \tau \omega v ~ l o o s e ~ t u b e ~(~ \chi \alpha \lambda \alpha \rho о v ́ ~ \sigma \omega \lambda \eta ́ v \alpha) ~ к \alpha \lambda \omega \delta i ́ \omega v ~ к \alpha ı ~$



Eıкóva 13: Tо $\mu$ и́ ка入 $\omega \delta$ iou

1. Central strength member (CSM): Dielectric, glass fiber reinforced plastic (FPR)
2. Filler: PE
3. Loose tube: PBT tube, filled with jelly compound
4. Water blocking element: Swellable, polyester yarns longitudinally applied
5. Wrapping: Water blocking tape longitudinally applied with overlap
6. Inner sheath: Black, HDPE
7. Reinforcement: double layer of glass yarns
8. Ripcord: Polyester or aramide thread of sufficient strength
9.Outer jacket: Black, UV resistant HDPE

| No. of fibers | 48 |
| :--- | :---: |
| No. of loose tubes | 4 |
| No. of fibers / tube | 12 |
| No. of filler elements | 1 |
| Inner sheath thickness (nominal) (mm) | 1.0 |
| Outer sheath thickness (nominal) (mm) | 12 |
| Cable overall diameter (nominal) (mm) | 120 |
| Cable weight (nominal) (kg/km) |  |




 $\alpha v \tau o ́ s ~ \theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \pi \alpha \rho o v \sigma \iota \alpha ́ \zeta \varepsilon ı ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta \eta ~ \alpha v \tau i ́ \sigma \tau \alpha \sigma \eta ~ \sigma \tau \eta v ~ \delta ı \alpha \pi \varepsilon \rho \alpha \tau o ́ \tau \eta \tau \alpha ~ \alpha \pi o ́ ~ v \gamma \rho \alpha \sigma i ́ \alpha ~$ $\kappa \alpha ı \mu \eta \chi \alpha v ı \varepsilon \varepsilon ́ \varsigma ~ к \alpha \tau \alpha \pi о v \eta ์ \sigma \varepsilon \iota \varsigma$.
 $\beta \alpha ́ \sigma \varepsilon \omega \varsigma ~ \sigma \varepsilon \mu о \rho \varphi \eta ́ ~ \beta \alpha \zeta ̌ \lambda i ́ v \eta \varsigma ~(g e l), ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~ \pi \rho о \sigma \tau \alpha \tau \varepsilon v ́ o v \tau \alpha ı ~ o l ~ i ́ v \varepsilon \varsigma ~ \alpha \pi o ́ ~ \alpha к \rho \alpha i ́ \varepsilon \varsigma ~$


 عíval avaүvตрíбцоı.

| $\Sigma \omega \lambda \eta$ víбко¢ | Х $\rho \omega \underline{\mu}$ |
| :---: | :---: |
| Прஸ́тоऽ | Kо́ккıขо |
|  | $\mathrm{M} \pi \lambda \varepsilon$ |
| PE Fillers | Фทбıкó（á $\chi \rho \omega \mu$ ） |
|  | \єuко́ |

 $\sigma v ́ \mu \varphi \omega v \alpha \mu \varepsilon$ тоv $\alpha \kappa о ́ \lambda о v \theta$ о лív $\alpha \kappa \alpha$ ：

| $\text { ívas }^{\mathbf{A} / \mathbf{A}}$ | Хро́но ívas |
| :---: | :---: |
| $1 \eta$ | Kóккıvo |
| $2 \eta$ | При́бıvo |
| $3 \eta$ | Kítpıvo |
| $4 \eta$ | Фибıко́（ $\alpha \chi \rho \omega \mu$ ） |
| $5 \eta$ | Kа甲と́ |
| $6 \eta$ | B1o入と́ |
| $7 \eta$ | Гкрı |
| $8 \eta$ | Tvркоуа́弓 |
| $9 \eta$ | Аблпо |
| $10 \eta$ | Po弓 |
| $11 \eta$ | Портока入í |
| $12 \eta$ | $\mathrm{M} \pi \lambda \varepsilon$ |

## MHXANIKA XAPAKTHPIETIKA KAI XAPAKTHPIETIKA

## ПЕРІВААМONTO乏 КАА $\Omega \Delta I O \Upsilon$

| Parameter | Tested according | Specified value | Acceptance criteria |
| :---: | :---: | :---: | :---: |
| Tensile strength (short term installation) | $\begin{aligned} & \text { IEC 60794-1- } \\ & \text { 2F1 } \end{aligned}$ | 3500 N | $\Delta \alpha<0.05 \mathrm{~dB}$ reversible, fiber strain $<0.33 \%$ |
| Crush resistance (short term) | $\begin{aligned} & \text { IEC 60794-1- } \\ & \text { 2E3 } \end{aligned}$ | $6000 \mathrm{~N} / 10 \mathrm{~cm}$ | $\Delta \alpha<0.05 \mathrm{~dB}$ reversible, no damage |
| Impact resistance | $\begin{aligned} & \text { IEC 60794-1- } \\ & \text { 2E4 } \end{aligned}$ | $\begin{aligned} & 10 \mathrm{~N} . \mathrm{m}, 3 \\ & \text { impacts spaced, } \\ & \mathrm{R}=30 \mathrm{~mm} \end{aligned}$ | $\Delta \alpha<0.05 \mathrm{~dB}$ reversible, no damage |
| Torsion | $\begin{aligned} & \text { IEC 60794-1- } \\ & \text { 2E7 } \end{aligned}$ | $\begin{aligned} & \pm 180^{\circ}, 5 \text { cycles, } \\ & 50 \mathrm{~N} \end{aligned}$ | $\Delta \alpha<0.05 \mathrm{~dB}$ reversible, no damage |
| Bending (static) | IEC 60794-12E11 | $\mathrm{R}=10 \times \mathrm{D}, 5$ <br> turns, 3 cycles | $\Delta \alpha<0.05 \mathrm{~dB}$ reversible, no damage |
| Repeated bending (dynamic) | $\begin{aligned} & \text { IEC 60794-1- } \\ & \text { 2E6 } \end{aligned}$ | $\begin{aligned} & \mathrm{R}=15 \times \mathrm{D}, 100 \\ & \mathrm{~N}, 30 \text { cycles } \end{aligned}$ | $\Delta \alpha<0.05 \mathrm{~dB}$ reversible, no damage |
| Temperature cycling | $\begin{aligned} & \text { IEC 60794-1- } \\ & \text { 2F1 } \end{aligned}$ | $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\Delta \alpha<0.05 \mathrm{~dB} / \mathrm{km}$ |
| Water tightness | IEC 60794-1- <br> 2F5b | 3 m cable, 1 m water column, 24 h | no water detected with UV light |

Note: all optical power measurements are at 1550 nm .

## BALIKA XAPAKTHPILTIKA MONOTPOПתN OПTIKתN IN $\Omega$ N

| XAPAKTHPİTIKO | G652D |
| :---: | :---: |
|  | $125.0 \pm 0.7 \mu \mathrm{~m}$ |
| $\Delta \dot{\alpha} \mu \varepsilon \tau \rho \circ \varsigma \pi \rho \omega \tau \varepsilon v ́ o v \sigma \alpha \varsigma \varepsilon \pi$ í $\sigma \tau \rho \omega \sigma \eta \varsigma$ (Coating diameter) noncolored | $245 \pm 10 \mu \mathrm{~m}$ |
| Core concentricity error | $\leq 0.5 \mu \mathrm{~m}$ |
|  circularity) | $\leq 1 \%$ |
| Coating-Cladding concentricity error | $\leq 12 \mu \mathrm{~m}$ |
| Mode field diameter 1310 nm | $9.2 \pm 0.4 \mu \mathrm{~m}$ |
| Mode field diameter 1550 nm | $10.4 \pm 0.5 \mu \mathrm{~m}$ |
|  | $\leq 0.35 * \mathrm{~dB} / \mathrm{km}$ |
|  | $\leq 0.33 * \mathrm{~dB} / \mathrm{km}$ |
|  | $\leq 0.22 * \mathrm{~dB} / \mathrm{km}$ |
|  | $\leq 0.25 * \mathrm{~dB} / \mathrm{km}$ |
| Cable cut-off wavelength $\lambda_{\text {cc }}$ | $\lambda_{\mathrm{cc}} \leq 1260 \mathrm{~nm}$ |
|  | $\leq 3.5 \mathrm{ps} /(\mathrm{nm} \cdot \mathrm{km})$ |
|  | $\leq 18 \mathrm{ps} /(\mathrm{nm} \cdot \mathrm{km})$ |
| Link design value $\mathrm{PMD}_{\mathrm{Q}}$ | $\leq 0.08 \mathrm{ps} / \sim \mathrm{km}$ |

*: cabled values

## КЕФАААІО 5

## ТРОПОI TEPMATILMO§



 $\delta \iota \alpha \kappa \lambda \alpha \delta \omega ́ \sigma \varepsilon \omega v$.




Н $\delta$ ช̛́ $\tau \alpha \xi ̆ \eta ~ \sigma v \gamma к o ́ \lambda \lambda \eta \sigma \eta \varsigma ~ \pi \rho \varepsilon ́ \pi \varepsilon ะ: ~$

- $\quad v \alpha \kappa \lambda \varepsilon i ́ v \varepsilon ı ~ \varepsilon \rho \mu \eta \tau \iota \kappa \alpha ́ ~$
- $v \alpha \pi \rho о \sigma \tau \alpha \tau \varepsilon v ́ \varepsilon \tau \alpha l ~ \alpha \pi o ́ ~ v \delta \alpha \tau о \sigma \tau \varepsilon \gamma \varepsilon ́ \varsigma ~ \pi \varepsilon \rho i ́ ß \lambda \eta \mu \alpha$
- va $\delta 1 \alpha \theta \varepsilon ́ \varepsilon \varepsilon \varepsilon \imath ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \varepsilon ו \sigma \alpha \gamma \omega \gamma \eta ́ s, ~ \sigma \varphi \rho \alpha ́ \gamma ı \sigma \eta s ~ к \alpha ı ~ \alpha \delta ı \alpha \beta \rho о \chi о \pi о і ́ \eta \sigma \eta \varsigma ~ \tau \omega v$ $\kappa \alpha \lambda \omega \delta i ́ \omega v \kappa \alpha ı \tau \omega v ~ \imath v ต ́ v$
 $\chi \omega \rho i ́ s ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \varepsilon \iota \delta ı \kappa ळ ́ v ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \omega v$


## ПPOLBALH $\Sigma T A ~ M H X A N H M A T A ~$

$\Gamma 1 \alpha \tau \eta \nu \pi \rho o ́ \sigma \beta \alpha \sigma \eta \tau \omega \nu \mu \eta \chi \alpha \nu \eta \mu \alpha ́ \tau \omega \nu \pi \circ \vee \beta \rho i ́ \sigma \kappa о \nu \tau \alpha \iota ~ \sigma \cup v \eta ́ \theta \omega \varsigma ~ \sigma \tau \eta \nu \tau \alpha \rho \alpha ́ \tau \sigma \alpha \tau \omega \nu$


## 1) Eбんт



Eıкóv $\alpha$ 14: Прó $\beta$ ß


Eเкóva 15: Про́бßабף бт $\mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha(\beta)$
2) $\Sigma \tau \eta \prime \rho ı \xi \eta \mu \varepsilon \Omega$ ( $\pi \rho o ́ \sigma \beta \alpha \sigma \eta$ тои к $\alpha \lambda \omega \delta i ́ o v ~ \sigma \varepsilon \kappa \alpha ́ \theta \varepsilon$ ó $\rho о \varphi о)$


Eเкóv $\alpha$ 16: Прóб $\beta \alpha \sigma \eta$ бт $\alpha \mu \chi \alpha v \eta ́ \mu \alpha \tau \alpha$ ( $ү$ )


Eเкóva 17: Про́бß $\alpha \sigma \eta$ бт $\alpha \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha$ ( $\delta$ )

## 3) $\Sigma \tau \eta \prime \rho \iota \xi \eta \mu \varepsilon \sigma v \rho \mu \alpha \tau o ́ \sigma \chi o เ v o(\alpha \pi \alpha \iota \tau \varepsilon i ́ \tau \alpha \iota \pi \rho o ́ \sigma \beta \alpha \sigma \eta \sigma \varepsilon$ бv́o

## $\tau \varepsilon \rho \mu \alpha \tau เ \kappa \alpha ́ \alpha \sigma \mu \varepsilon i ́ \alpha)$



Eเкóv $\alpha$ 18: Про́бßабף $\sigma \tau \alpha \mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha(\varepsilon)$


$\Sigma \varepsilon$ ó $\lambda \varepsilon \varsigma ~ \tau ı \varsigma ~ \pi \varepsilon \rho ı \pi \tau ต ́ \sigma \varepsilon ı \varsigma ~ \kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \varphi \rho \varepsilon \alpha ́ \tau ı о ~ \mu \varepsilon ~ \sigma u v \delta \varepsilon \tau ı \kappa o ́ ~ \sigma o ́ v \delta \varepsilon \sigma \mu o ~(s p l i c e ~$
 wต́v.

## TEPMATILMOE KAI $\Delta I A \Sigma Y N \Delta E \Sigma H ~ O П T I K \Omega N ~ I N \Omega N ~$

## OПTIKOE KATANEMHTHE - ODF









 oォ兀ıкต́v ıvóv.




 $\tau \omega \nu \sigma \nu v \delta \varepsilon \tau \iota \kappa \dot{v} \kappa \alpha \lambda \omega \delta i ́ \omega v \sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \eta \nu \varepsilon \pi \imath \tau \rho \varepsilon \pi o ́ \mu \varepsilon \vee \eta \alpha \kappa \tau i ́ v \alpha \kappa \alpha \mu \pi \nu \lambda o ́ \tau \eta \tau \alpha \varsigma$.












 $\kappa \alpha \mu \pi \nu \lambda o ́ \tau \eta \tau \alpha \varsigma ~ \tau \omega v ~ \sigma \omega \lambda \eta v i ́ \sigma \kappa \omega v ~ \tau о v ~ \kappa \alpha \lambda \omega \delta i ́ o v . ~ O ı ~ \sigma \omega \lambda \eta \nu i ́ \sigma \kappa o ı ~ \alpha v \tau o i ́ ~ \varepsilon ו \sigma \varepsilon ́ \rho \chi о v \tau \alpha ı ~$

 бטртарळтஸ́v $\alpha \lambda \lambda \alpha ́ ~ \varepsilon v ́ \kappa \alpha \mu \pi \tau \omega v ~ к \alpha v \alpha \lambda ı \omega ́ v . ~ T o ~ i ́ \delta \delta o ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \varepsilon v ́ \kappa \alpha \mu \pi \tau \omega v ~ к \alpha v \alpha \lambda ı \omega ́ v ~$

 $\sigma \tau \alpha 38 \mathrm{~mm}$.








 $\pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \varepsilon ~ v \varphi \iota \sigma \tau \alpha ́ \mu \varepsilon v \alpha$ ท́ $\mu \varepsilon \lambda \lambda$ оv兀ıк $\alpha, \mu \eta \chi \alpha v \eta ́ \mu \alpha \tau \alpha$.


## 

a) $\sum \varepsilon \kappa \lambda \varepsilon \iota \sigma \tau$ ó $\chi \dot{\omega} \rho o \quad \sigma \varepsilon$ Rack


ß) Evtóc outdoor каитivas tov $\Sigma B$





## 






1. $\Sigma v v \delta \varepsilon \tau ท ์ \rho \varepsilon \varsigma$
2. $\Sigma \cup \zeta \varepsilon \varepsilon ́ \kappa \tau \varepsilon \varsigma$









 $\chi \omega ́ \rho o$.



 $\alpha \rho ı \theta \mu o ́ ~ \tau \omega v ~ \imath v ต ́ v ~ \tau о v ~ \kappa \alpha \lambda \omega \delta i ́ o v ~ \pi o v ~ \tau \varepsilon \rho \mu \alpha \tau i \zeta \varepsilon є ~ \sigma \tau о \nu ~ к \alpha \tau \alpha \nu \varepsilon \mu \eta \tau \eta ́ . ~$



## КЕФА^AIO 6

## METPHEIL

## OTDR








- Mह́т $\rho \eta \sigma \eta \alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon \omega \nu$

- Avíqvevoŋ тотıкळ́v $\delta \iota \alpha \tau \alpha \rho \alpha \chi \omega ́ v ~ \varepsilon \xi \alpha \sigma \theta \varepsilon ́ v \eta \sigma \eta \varsigma$
- М
 $\chi$ роvıкои́ $\delta \iota \alpha \sigma \tau \grave{\mu} \mu \tau$ то̧.


Elкóv $\alpha$ 28: Mn犭óv $\mu \boldsymbol{\alpha}$ OTDR ( $\beta$ )


 $\nu \Psi \eta \lambda \eta ́ \varsigma ~ \varepsilon \xi \alpha \sigma \theta \varepsilon ́ v i \sigma \eta \varsigma$.


$$
L=\frac{v t}{2}=\frac{c t}{2 n}
$$






 $\sigma \omega \sigma \tau \eta \mathfrak{\varepsilon \pi i \lambda o \gamma \eta ́ ~ \delta \varepsilon i ́ \kappa \tau \eta ~ \delta ı \alpha ́ \theta \lambda \alpha \sigma \eta ร ~ \varepsilon ́ \chi \varepsilon ı ~ \pi о \lambda v ́ ~ \sigma \eta \mu \alpha \nu \tau ı к o ́ ~ \rho o ́ \lambda o ~ \sigma \tau \eta \nu ~ \alpha к \rho i ́ ß \varepsilon ı \alpha ~ \tau \eta \varsigma ~}$ $\mu \varepsilon ́ \tau \rho \eta \sigma \eta \varsigma$.
 OTDR.


Distance


 $\varepsilon \mu \varphi \alpha \nu 1 \sigma \tau o u ́ v ~ \sigma \alpha v$ " $\gamma o ́ v \alpha \tau \alpha "$ " $\tau \eta \nu \kappa \alpha \mu \pi \dot{\lambda} \lambda \eta$.

 $\varepsilon \xi \alpha \sigma \theta \varepsilon v \varepsilon i ́ ~ \tau о ~ \sigma \eta ́ \mu \alpha \sigma \alpha \varsigma ~ \sigma \tau \eta ~ \delta ı \alpha \delta \rho о \mu \eta ं ~ \tau \eta \varsigma ~ \zeta \varepsilon ט ́ \xi \eta \varsigma$.
 $\sigma \omega \sigma \tau \varepsilon ́ \varsigma ~ \rho v \theta \mu i ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau o ~ O T D R ~$

## Х $\alpha \rho \alpha к \tau \eta \rho ı \sigma \tau \iota к \alpha ́ к \rho i ́ \sigma \iota \mu \eta \varsigma ~ \sigma \eta \mu \alpha \sigma i ́ \alpha \varsigma:$

## 1) $ی \varepsilon к \rho \dot{\eta} Z \omega ́ v \eta$




 $\varepsilon \sigma \omega \tau \varepsilon \rho ı \kappa o ́ ~ \varepsilon v o ́ s ~ \kappa \alpha \tau \alpha v \varepsilon \mu \eta \tau \eta ́ ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~ \delta v v \alpha \tau o ́ ~ v \alpha ~ \alpha v \chi \chi \vee \varepsilon v \theta \varepsilon i ́ ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~ O T D R ~ \alpha \pi o ́ ~ \tau \eta v$


 $\alpha \pi o ́ ~ \tau о ~ o ́ \rho \gamma \alpha v o . ~ A v \tau i ́ ~ \gamma ı \alpha ~ \alpha v \tau o ́ ~ \theta \alpha ~ \varphi \alpha v \varepsilon i ́ ~ \mu i ́ \alpha ~ \mu o ́ v o ~ \sigma v \gamma к o ́ \lambda \lambda \eta ŋ \eta ~ \tau \eta \varsigma ~ о \pi о i ́ \alpha \varsigma ~ o l ~ \sigma v v o \lambda ı к \varepsilon ́ \varsigma ~$


## 2) Ev́ $о$ ос Пад $\mu \dot{\omega} v$

 тo OTDR عíval óбo тo $\delta v v \alpha \tau o ́ ~ \sigma \tau \varepsilon v o ́ \tau \varepsilon \rho o v ~ \varepsilon v ́ \rho o v s . ~ \Delta v б \tau ט \chi ต ́ \varsigma ~ \mu i ́ \alpha ~ \tau \varepsilon ́ \tau o l \alpha ~ \rho v ́ \theta \mu ı \sigma \eta ~ \delta \varepsilon v ~$


 $\chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \mu o ́ \mu i ́ \alpha \varsigma ~ о \pi \tau \iota \kappa \eta \varsigma \varsigma ~ \zeta \varepsilon v ́ \xi \eta \varsigma ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta \varsigma ~ \sigma \chi \varepsilon \tau \iota \kappa \alpha ́ \alpha \pi o ́ \alpha \tau \alpha \sigma \eta \varsigma(>40 \mathrm{Km})$, $\alpha v \tau o ́$ ó $\mu \omega \varsigma$


 $\mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~ \alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma . \Sigma v v \eta ́ \theta \omega \varsigma ~ \eta ~ \sigma \omega \sigma \tau \eta ́ ~ \rho v ́ \theta \mu ı \sigma \eta ~ \varepsilon \pi ı \tau v \gamma \chi \alpha ́ v \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \alpha v \tau o ́ \mu \alpha \tau \eta ~$
 Н $\alpha v \tau o ́ \mu \alpha \tau \eta ~ \lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha ~ \varepsilon \pi i \lambda \varepsilon ́ \gamma \varepsilon ı ~ \tau о ~ \sigma \omega \sigma \tau o ́ ~ \varepsilon v ́ \rho o s ~ \pi \alpha \lambda \mu ஸ ́ v ~ \mu \varepsilon ~ к \rho ı \tau \eta ́ \rho ı ~ \tau \eta \nu ~ o ́ \sigma o ~ \tau о ~$
 $\chi \alpha \rho \alpha \kappa \tau \eta \rho ı \tau \iota \kappa \dot{v} \tau \eta \varsigma \zeta \varepsilon$ ऽи́ $\eta \varsigma$.

## 3) $\Delta v$ vаиוкท́ $\pi \varepsilon \rho เ o \chi \dot{~}$






 $\varepsilon \pi \iota \tau \rho \varepsilon ́ \pi \varepsilon \iota ~ \mu \varepsilon ́ \chi \rho ı ~ к \alpha ı ~ \tau \alpha ~ 100 K m ~ v \alpha ~ \varepsilon \xi \alpha ́ \gamma о v \mu \varepsilon ~ \alpha \sigma \varphi \alpha \lambda \eta ́ ~ \sigma \cup \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha, ~ \eta ~ о \pi о i ́ \alpha ~$






 $\alpha v \alpha \kappa \lambda \omega ́ \mu \varepsilon v o), \beta \gamma \alpha ́ \zeta о \nu \mu \varepsilon$ то $\sigma v \mu \pi \varepsilon ́ \rho \alpha \sigma \mu \alpha \pi \omega \varsigma ~ \eta ~ \delta v v \alpha \mu ı к \eta ́ \pi \varepsilon \rho ı о \chi \eta ́ ~ \theta \alpha ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~$
 $\pi \alpha \lambda \mu \omega ́ v$.

E $\pi ı \pi \lambda \varepsilon ́ o v:$


- H $\varepsilon \lambda \alpha \chi ı \tau \tau \pi о i ́ \eta \sigma \eta ~ \tau о v ~ \theta o \rho ט ́ ß o v ~ \sigma \tau \eta ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta ~ \varepsilon \pi ı \tau v \gamma \chi \alpha ́ v \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \varepsilon v \rho v ́ \tau \varepsilon \rho o v \varsigma ~$ $\pi \alpha \lambda \mu o v ́ s$.
 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$.

 $\varepsilon v \delta ı \alpha \varphi \varepsilon ́ \rho \varepsilon \iota$ о акръßŋ́s $\chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \mu o ́ s ~ \tau о v ~ \pi \rho ต ́ \tau о v ~ \alpha ́ к \rho о v ~ \tau \eta \varsigma, ~ \chi \rho \eta \sigma \mu о \pi о ь о и ́ \mu \varepsilon ~$

 $\alpha v \theta \varepsilon \kappa \tau \iota \kappa о и ́ \varsigma ~ \sigma \tau \iota \varsigma ~ \alpha \pi \omega ́ \lambda \varepsilon \varepsilon \varepsilon \varsigma . ~ ' E \tau \sigma ı ~ \eta ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о i ́ \eta \sigma \eta ~ \tau \eta \varsigma ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta \varsigma ~ \sigma \varepsilon ~ \pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho \alpha$
 ó $\lambda_{0} \tau о \mu \eta ́ \kappa o \varsigma \tau \eta \varsigma$.


## ILONOГILMOE ILXYOE (LINK POWER BUDGET)

Mó $\lambda ı \varsigma ~ \gamma i ́ v \varepsilon ı ~ o ~ \beta \alpha \sigma ı к o ́ s ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ s ~ \tau o v ~ \delta ı к \tau v ́ o v, ~ \tau o ~ \varepsilon \pi o ́ \mu \varepsilon v o ~ \beta भ ́ \mu \alpha ~ \varepsilon i ́ v \alpha ı ~ v \alpha ~ к \alpha ́ v o v \mu \varepsilon ~$ غ́va "Link Power Budget" то олоío vлодоүíц६ı 兀ıऽ $\alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v \varepsilon \varsigma ~ \zeta \eta \mu i ́ \varepsilon \varsigma ~ \tau о v ~ c a b l e ~$


 (operating characteristics) $\varepsilon v o ́ \varsigma ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ о \pi \tau \iota \kappa \dot{v} ~ \imath v o ́ v . ~ A v \tau o ́ ~ \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~$







 $\delta \varepsilon ́ \kappa \tau \eta)$.




 غ́ $р \gamma$ о оі́б $\alpha \mu \varepsilon \pi \varepsilon \rho ı$ ө́́pı 3 dB ．

## ME 1 ETH LINK POWER BUDGET TH乏 OПTIKH工 $\Delta I A \Delta P O M H \Sigma$

ГКОПОЕ：

 $\kappa \alpha \rho \tau ஸ ́ v ~ \sigma \tau \alpha \pi о \lambda \nu \pi \lambda \varepsilon \kappa \tau \iota \kappa \alpha ́ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha:$

OПTIKH पIAムPOMH：
MAKRI（2525）－VARNAK（0014）

## ПAPA $\triangle О Х E \Sigma:$

|  | $0,35 \mathrm{~dB} / \mathrm{Km}$ |
| :---: | :---: |
|  | 0，5 dB |
| А $\pi \omega \lambda \lambda \varepsilon ı \varepsilon \varsigma ~ \sigma 0 v \delta \varepsilon ́ \sigma \mu \omega v$ | $0,5 \mathrm{~dB}$ |
|  | 3 dB |



## YП ОЛОГI工MO乏 OPTICAL POWER BUDGET:

| MAKRI (2525) - Manhole M_VLA_V080189 |  | 13.000 |
| :--- | :---: | :---: |
| Manhole M_VLA_V080189 - VARNAK (0014) |  | 1.000 |
| Total | 14.000 |  |
| Splice Enclosures | 9 |  |



 $\lambda \eta ́ \psi \eta \tau \omega \nu \kappa \alpha \rho \tau \omega ́ v$.

## КЕФА^АIO 7

## AS BUILT DOCUMENTATION





 COSMOTE, орıбтıколоıєít $\alpha \imath$ к $\alpha \imath \varepsilon \gamma \kappa \rho i ́ v \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau \eta \nu ~ C O S M O T E . ~$

## To As built-documentation $\pi \varepsilon \rho \iota \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota \tau \alpha \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega:$

## 1.Фа́кє







## 

 dd $/ \mathrm{mm} / \mathrm{ss}$.


1. Алоти́л $\omega \sigma \eta \tau \eta \varsigma \delta i \alpha \delta \rho о \mu \eta ́ \varsigma ~ \pi о v ~ \alpha к о \lambda о v \theta \eta ́ \theta \eta к \varepsilon$
 $\sigma \tau \alpha \theta \mu о$ ऽ $\beta \alpha ́ \sigma \eta \varsigma, ~ к \varepsilon \rho \alpha i ́ \varepsilon \varsigma, ~ \kappa \tau \lambda)$


2. Мף́коऽ $\delta 1 \alpha \delta \rho о \mu \eta ́ \varsigma ~ \mu \varepsilon \tau \alpha \xi ์ ́ ~ \kappa о \mu \beta ı \kappa \dot{v} ~ \sigma \eta \mu \varepsilon i ́ \omega v$
 $\delta \iota \varepsilon ́ \lambda \varepsilon v \sigma \eta ~ \gamma \rho \alpha \mu \mu \dot{v} \tau \rho \alpha i ́ v o v, \pi о \tau \alpha \mu \dot{v}, \pi \varepsilon \zeta о \delta \rho о ́ \mu ı \alpha$


## $3 . \sum \chi \dot{\delta} \delta l \alpha \tau \omega \nu \varphi \rho \varepsilon \alpha \tau i ́ \omega v$







## 



 $\sigma u v \delta \varepsilon ́ \sigma \mu \circ v \varsigma($ sloops $)$.
 $\Delta \varepsilon v \theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \sigma v \mu \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon \tau \alpha \iota ~ \eta ~ \alpha \pi o ́ \sigma \tau \alpha \sigma \eta ~ \tau о v ~ к \alpha \lambda \omega \delta i ́ o v ~ \pi о v ~ \beta \rho i ́ \sigma \kappa \varepsilon \tau \alpha ı ~ \mu \varepsilon ́ \sigma \alpha ~$ बтov̧ $\sigma v \vee \delta \varepsilon ́ \sigma \mu \circ v \varsigma$.




d. To $\sigma \chi \varepsilon ́ \delta ь о ~ \theta \alpha \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \tau \eta v ~ \alpha \pi o ́ \sigma \tau \alpha \sigma \eta ~ \tau о v ~ \kappa \alpha \lambda \omega \delta i ́ o v ~ \mu \varepsilon \tau \alpha \xi ์ ́ ~ \tau \omega v ~ \varepsilon v ต ́ \sigma \varepsilon \omega v . ~ E \delta \omega ́ ~$





## 

 $\alpha \kappa о \lambda o v \theta \eta ́ \theta \eta \kappa \alpha v$ عvтós tov ктŋрíov.

## 

 غ́zoov $\delta \eta \mu ı o v \rho \gamma \eta \theta \varepsilon i$ катабкє৩વ́бтๆкє.

## 




## 8. Фமтоүр $\alpha \varphi i \varepsilon \varsigma ~$

$\Theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \delta о \theta \varepsilon i ́ ~ \varphi \omega \tau о \gamma \rho \alpha \varphi ı к o ́ ~ v \lambda ı к o ́ ~ \tau \eta \varsigma ~ \tau \varepsilon \lambda \imath \kappa \eta ́ \varsigma ~ \delta ı \alpha \delta \rho о \mu \eta ́ \varsigma, ~ к \alpha \theta \omega ́ \varsigma ~ к \alpha ı ~ \tau \omega v$ крíб $\mu \omega v$ б $\eta \mu \varepsilon i ́ \omega v$.

## 



## КЕФАへАІО 8

## ЕПІВ $К Е \Psi Н$

## RTU




 $\pi \mathrm{o} \lambda \lambda \alpha \dot{R T U s}$.

T $\alpha$ RTUs (Remote Telemetry Unit) $\varepsilon \gamma \kappa \alpha \theta i ́ \sigma \tau \alpha v \tau \alpha ı ~ \sigma \varepsilon ~ \alpha \pi о \mu \alpha к р v \sigma \mu \varepsilon ́ v \alpha ~ \sigma \eta \mu \varepsilon i ́ \alpha ~ \mu \varepsilon ~$


 $\varepsilon \pi \alpha \varphi \varepsilon ́ \varsigma, ~ \pi \alpha \lambda \mu \circ v ́ \varsigma, ~ \kappa \tau \lambda, ~ \sigma \varepsilon ~ \sigma \eta ́ \mu \alpha \tau \alpha ~ \tau \alpha ~ о \pi о i ́ \alpha ~ \mu \pi о \rho о и ́ v ~ v \alpha ~ \alpha \pi о \sigma \tau \alpha \lambda \lambda \_v ́ v ~ \varepsilon v \sigma v ́ \rho \mu \alpha \tau \alpha$ (cable) ŋ́ $\alpha \sigma \dot{\rho} \rho \mu \alpha \tau \alpha$ (radio). Eлíбףऽ, $\mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi \varepsilon ı ~ \varepsilon ו \sigma \varepsilon \rho \chi o ́ \mu \varepsilon v \alpha ~ \sigma \eta ́ \mu \alpha \tau \alpha \alpha \pi o ́ ~ \alpha ́ \lambda \lambda o ~ R T U ~$ ŋ́ $\alpha \pi o ́ ~ \varepsilon ́ v \alpha v ~ \kappa \varepsilon \nu \tau \rho ı к o ́ ~ H / Y ~ \sigma \varepsilon ~ \sigma \eta ́ \mu \alpha \tau \alpha ~ \varepsilon \xi o ́ \delta o v . ~$

## NQMS

M $\varepsilon \beta \alpha ́ \sigma \eta$ то RTU $\lambda \varepsilon \iota \tau о \cup \rho \gamma \varepsilon i ́ ~ к \alpha ı ~ \tau o ~ N Q M S ~(N e t w r o k ~ Q u a l i t y ~ M o n i t o r i n g ~ S y s t e m s), ~$





Eukóva 30: NQMS

## Baбוкес 入eltovpүiec tov NQMS:




$\checkmark$ Fault-on-map ( $\chi \alpha ́ \rho \tau \eta \varsigma ~ \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega v$ )
$\checkmark$ Проүраццатıб $\mu \varepsilon ́ v \varepsilon \varsigma ~ O T D R ~ \mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon ı \varsigma ~$
$\checkmark$ A $\pi о \mu \alpha \kappa \rho \iota \sigma \mu \varepsilon ́ v \eta ~ \varepsilon \pi i ́ \lambda \nu \sigma \eta ~ \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v$ (trouble-shooting)


 тоv $\delta \iota \kappa \tau ט ́ \sigma v, ~ \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \varsigma ~ \alpha \nu \alpha \varphi о \rho \varepsilon ́ \varsigma ~ \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega v$.
(High-resolution view of a fiber link)

## OSPInSight





Паро́бє $\gamma \gamma \mu \alpha$ бто Паја́ртұ $\mu \alpha$.

## КЕФАААІО 9

## ДIЕПАФН IUB

## TI EINAI H $\triangle$ IEПАФН IUB






 $\mu \varepsilon \tau \alpha \xi \mathfrak{v} 6$ каı 9).


Eıкóva 31: $\Delta เ \varepsilon \pi \alpha ф \eta ̆ ~ l u b ~$

## ェTOXOI KAI $\Lambda$ EITOYPГIE $\Sigma$ TH乏 IUB $\triangle$ IEПAФНГ






- $\Delta \downarrow \alpha \chi \varepsilon i ́ \rho ı \sigma \eta ~ \delta ı \alpha \mu o ́ \rho \varphi \omega \sigma \eta \varsigma ~ к \nu \psi \varepsilon ́ \lambda \eta \varsigma ~$
- Мєтрŋ́бєıऽ $\varepsilon \pi i ́ \delta o \sigma \eta \varsigma ~ P \alpha \delta ı \delta ı к \tau ט ́ o v ~$
- $\Delta$ taxzípıə $\pi o ́ \rho \omega v$
- $\Delta ı \alpha \chi \varepsilon ́ \rho เ ซ \eta ~ к о เ v ต ́ v ~ к \alpha v \alpha \lambda i ́ \omega v ~ \delta ı \kappa \tau v ́ o v ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta ร ~$


3. $\Delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta ~ \pi \lambda \eta \rho о \varphi о \rho ı ஸ ́ v ~ \Sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~$




- Мєгачора́ $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$


- Елíß $\lambda \varepsilon \psi \eta$ P $\alpha \delta \iota \circ \zeta \varepsilon u ́ \xi \eta \varsigma$
- $\Delta 1 \alpha v o \mu \eta ́ / \alpha \pi о \delta ı \alpha v o \mu \eta ́ \kappa \alpha v \alpha \lambda \imath \omega ́ v$





- $\Delta 1 \alpha \chi \varepsilon i ́ \rho i \sigma \eta$
- $\Delta v v \alpha \mu ı к ŋ ́ ~ \alpha v \alpha ́ \theta \varepsilon \sigma \eta ~ \varphi v \sigma เ к ต ́ v ~ к \alpha v \alpha \lambda ı ต ́ v ~$
- $\Delta$ ı $\alpha \chi \varepsilon i ́ \rho ı \sigma \eta ~ P \alpha \delta ı \zeta \varepsilon v ́ \xi \eta \varsigma ~$
- Meтачоро́ $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$

- Metó $\delta o \sigma \eta ~ \kappa \alpha v \alpha \lambda ı o v ́ ~ \sigma v \gamma \chi \rho o v ı \sigma \mu о v ́ ~$




## XAPAKTHPIETIKA IUB $\boldsymbol{\Delta I E П А Ф Н \Sigma ~}$

## 

DCH:

 $\pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \delta \eta \mu ı v \rho \gamma \eta \theta \varepsilon i ́ ~ \sigma \tau \eta \nu$ Iub $\varepsilon \kappa \tau o ́ \varsigma ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \imath \sigma o \delta v ́ v \alpha \mu \omega \nu ~ D C H$
 $\mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma$.

## CPCH:

Mía $\rho \circ \grave{j} \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v$ عvós Iub CPCH (Common Packet Channel) каva入ıó

 $\sigma \tau \eta \nu$ Iub.

## RACH:

Mía $\rho o \neq j ~ \delta \varepsilon \delta o \mu \varepsilon ́ v ต v ~ \varepsilon v o ́ s ~ I u b ~ R A C H ~(R a n d o m ~ A c c e s s ~ C h a n n e l) ~ \kappa \alpha v \alpha \lambda ı o v ́ ~$

 $\sigma \tau \eta \nu$ Iub.

## FACH:

Mía $\rho \circ \mathfrak{j}$ $\delta \varepsilon \delta о \mu \varepsilon ́ v ต v ~ \varepsilon v o ́ \varsigma ~ I u b ~ F A C H ~(F o r w a r d ~ A c c e s s ~ C h a n n e l) ~ \kappa \alpha v \alpha \lambda ı o v ́ ~$

 $\sigma \tau \eta \nu$ Iub.

## DSCH:





## USCH:





## Пршто́кодл $\alpha$ тทৎ Iub

 $\pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma ~ \kappa \alpha ı ~ \tau о v ~ \varepsilon \pi ı \pi \varepsilon ́ \delta o v ~ \delta ı \kappa \tau v ์ o v ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma . ~ Г ı \alpha ~ \tau о v ~ \lambda o ́ \gamma o ~ \alpha v \tau o ́ ~ \eta ~ \sigma \eta \mu \alpha \tau о \delta о б i ́ \alpha ~$






Eıкóva 32: Пршто́ко $\lambda \lambda \alpha$ tŋ̧ lub

## पIAЫIKALIE NBAP ПPSTOKOA1OY (NBAP Procedures)

Oı $\delta 1 \alpha \delta ı \kappa \alpha \sigma i ́ \varepsilon \varsigma ~ \tau o v ~ \pi \rho \omega \tau о к o ́ \lambda \lambda о v ~ \sigma \eta \mu \alpha \tau о \delta о \sigma i ́ \alpha \varsigma ~ N B A P ~ \chi \omega \rho i ́ \zeta о v \tau \alpha ı ~ \sigma \varepsilon ~ к о เ v \varepsilon ́ \varsigma ~$ (common) каı $\alpha \pi о \kappa \lambda \varepsilon \iota \sigma \tau 1 \kappa \varepsilon ́ \zeta ~(d e d i c a t e d) ~ \delta ı \alpha \delta \iota \kappa \alpha \sigma i ́ \varsigma \varsigma$.

- Oı коıvés $\delta 1 \alpha \delta ı \kappa \alpha \sigma i ́ \varepsilon \varsigma ~ \alpha \pi \alpha ı \tau o v ́ v ~ \tau \eta \nu ~ \varepsilon к к i ́ \eta \eta \sigma \eta ~ \varepsilon v o ́ s ~ U E ~ \pi \lambda \alpha ı \sigma i ́ o v ~ \gamma ı \alpha ~ \varepsilon ́ v \alpha ~$

 $\sigma \tau 0 \vee$ Kó $\mu \beta$ B. Avtó тo UE $\pi \lambda \alpha i ́ \sigma ı o ~ \alpha v \alpha \gamma v \omega \rho i ́ \zeta \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \mu i ́ \alpha ~ \tau \alpha v \tau o ́ \tau \eta \tau \alpha . ~$
 бף $\mu \tau \tau$ обобías.


## UIAXEIPILH KOINSN KANAAISN (Common Channels Management)



 $\varepsilon \pi \alpha \nu \varepsilon \kappa \pi о \mu \pi \grave{\varsigma}$ (paging retransmission).
 $\alpha \pi$ ó $\tau$ ov Kó $\mu ß$ o B бто RNC.

## UDP (User Datagram Protocol)


 (BTS) каı то RNC каӨஸ́s oı кдท́ $\sigma \varepsilon ı \varsigma ~ \delta \eta \mu ı о \cup \rho \gamma о v ́ v \tau \alpha ı . ~ \Delta \varepsilon v ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ к \alpha \mu i ́ \alpha ~ \sigma \chi \varepsilon ́ \sigma \eta ~$
 $\Sigma \tau \alpha \theta \mu o ́ ~ B \alpha ́ \sigma \eta \varsigma . ~ T o ~ R N C ~ \varepsilon \kappa \chi \omega \rho \varepsilon i ́ ~ \gamma ı \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \Sigma \tau \alpha \theta \mu o ́ ~ B \alpha ́ \sigma \eta \varsigma ~ \tau \eta \nu ~ \varepsilon \pi o ́ \mu \varepsilon \imath \eta ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \eta ~ \theta u ́ \rho \alpha ~$ $\sigma \tau$ IP.

## SCTP (Stream Control Transmission Protocol)

 $\mu \varepsilon \tau \alpha \delta \eta \mu о \varphi \iota \lambda \eta ́ \pi \rho \omega \tau о ́ \kappa о \lambda \lambda \alpha$ TCP (Transmission Control Protocol) к $\alpha \iota$ UDP (User

Datagram Protocol). Парغ́ $\ell є 1 ~ \mu \varepsilon \rho ı \kappa \alpha ́ ~ i ́ \delta ı \alpha ~ \gamma v \omega \rho i ́ \sigma \mu \alpha \tau \alpha ~ \kappa \alpha ı ~ \tau \omega \nu ~ \delta v ́ o: ~ \varepsilon i ́ v \alpha ı ~$




$\Gamma v \omega$ рí $\mu \alpha \alpha \tau \alpha$ тov SCTP عíval:
 ठv́o óкра $\mu$ í $\alpha$ ̧ $\sigma$ v́v $\delta \varepsilon \sigma \eta \varsigma ~ \mu \pi о \rho о и ́ v ~ v \alpha ~ \alpha \pi о \tau \varepsilon \lambda о v ́ v \tau \alpha ı ~ \alpha \pi o ́ ~ \pi \alpha ́ v \omega ~ \alpha \pi o ́ ~ \mu i ́ \alpha ~ I P ~$
 $\delta 1 \alpha \delta \rho о \mu \varepsilon ́ \varsigma ~ \delta ı \kappa \tau ט ์ o v$.

- Delivery of chunks: H $\pi \alpha \rho \alpha ́ \delta o \sigma \eta ~ \tau \omega v ~ \tau \mu \eta \mu \alpha ́ \tau \omega \nu ~ \pi \eta \rho о \varphi о \rho i ́ \alpha \varsigma ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma \varepsilon$



 $\pi \alpha \rho \alpha ́ \delta o \sigma \eta ~ \tau о \cup ~ T C P . ~$
 (primary transmission path) $\kappa \alpha \iota \varepsilon \lambda \varepsilon ́ \gamma \chi \varepsilon \tau \alpha \downarrow \eta ~ \sigma v v \delta \varepsilon \sigma \mu \circ ́ \tau \eta \tau \alpha \tau \eta \varsigma$.
- Validation and acknowledgement mechanism: $\mathrm{O} \mu \eta \chi \alpha \nu ı \sigma \mu$ ó $\alpha v \tau o ́ \varsigma \lambda \varepsilon ı \tau 0 \cup \rho \gamma \varepsilon i ́$


- Improved error detection: H $\beta \varepsilon \lambda \tau 1 \omega \mu \varepsilon ́ v \eta ~ \alpha v i ́ \chi v \varepsilon v \sigma \eta ~ \lambda \alpha \theta \omega ́ v ~ \varepsilon i ́ v \alpha l ~ \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \lambda \eta$ $\gamma 1 \alpha \mu \varepsilon \gamma \alpha ́ \lambda \alpha \alpha \lambda \alpha i^{\prime} \sigma \alpha$ Ethernet.


## 

## UIAXEIPILH PAムIOПOPSN (Radio Resource Management)




 $\pi \lambda \varepsilon o v \alpha ́ \zeta o v \tau o \varsigma ~ \rho \alpha \delta ı \varepsilon \xi \xi \circ \pi \lambda ı \sigma \mu \circ v$.

## UIAXEIPILH ФOPEA ГHMATOUOEIA $\Sigma$ IUB UIEПA ФH $\Sigma$ (IUB Signalling Bearer

## Management)





## DOWNLINK EAEГXOE I XXYOE (DL Power Control)


 $\sigma ט v \delta \varepsilon ́ \sigma \varepsilon 1 \varsigma ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \circ v ~ \tau \omega v$ radio $\pi o ́ \rho \omega \nu$ (RRC Radio Resource Control) $\mu \varepsilon ́ \sigma \alpha$ $\sigma \tau \circ v$ Kо́ $\beta$ во B.





## APXITEKTONIKH $\triangle$ IEПAФHЕ IUB

Н арұıєєктоvıкŋ́ тоv $\pi \rho \omega \tau о к о ́ \lambda \lambda о v ~ \tau \eta \varsigma ~ I u b ~ \delta ı \varepsilon \pi \alpha \varphi \eta ́ s ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha ı ~ \alpha \pi o ́ ~ \delta v ́ o ~$ $\lambda \varepsilon ı \tau о \cup \rho \gamma \iota \kappa \alpha ́ ~ \varepsilon \pi i ́ \tau \varepsilon \delta \alpha, \sigma \tau \rho \omega ́ \mu \alpha \tau \alpha:$

1. To $\varepsilon \pi i \pi \varepsilon \delta o ~ \rho \alpha \delta ı o \delta ı \kappa \tau v ́ o v ~(R a d i o ~ N e t w o r k ~ L a y e r) ~ o \rho i ́ \zeta \varepsilon ı ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \varepsilon \varsigma ~ \pi o v ~$


2. To $\varepsilon \pi i ́ \pi \varepsilon \delta o ~ \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma ~(T r a n s p o r t ~ L a y e r) ~ о р i ́ ̧ \varepsilon ı ~ \delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \varepsilon \varsigma ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \gamma к \alpha \theta i ́ \delta \rho v \sigma \eta$



Eıкóv $\alpha$ 33: lub $\alpha \rho \chi ı \tau \varepsilon к т о v ı к ท ́ ~$

## QoS

$\Gamma \imath \alpha$ то Quality of Service (QoS=$=\pi о ı ́ \tau \eta \tau \alpha ~ \tau \eta \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \alpha \varsigma) ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \mu i ́ \alpha ~ \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho о \varsigma ~$








| PHB | VLAN Priority |
| :--- | :---: |
| EF | 6 (Voice) |
| AF4 | 5 |
| AF3 | 4 |
| AF2 | 3 |
| AF1 | 1 |
| BE | 0 (Best Effort) |

Eıкóva 34: Avtıotoixıon PHB

## EF (Expedited Forward)





 $\lambda \varepsilon ı \tau о \cup \rho \gamma о и ́ v ~ к \alpha v o v ı \kappa \alpha ́ . ~$

## AF (Assured Forwarding)




 $\varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma ~ \mu \eta ~ \pi \rho \alpha \gamma \mu \alpha \tau ı к о \cup ́ ~ \chi \rho o ́ v o v ~(\sigma \eta \mu \alpha \tau о \delta о \sigma i ́ \alpha, ~ \sigma v \gamma \chi \rho о v ı \sigma \mu o ́ \varsigma, ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ v i d e o$,



## $\underline{B E}$ (Best Effort)

Н к $\lambda \alpha ́ \sigma \eta ~ B E ~ \delta ı \alpha \chi \varepsilon ı \rho i ́ \zeta \varepsilon \tau \alpha ı ~ \tau о ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho o ~ \pi о \sigma \tau о \sigma \tau o ́ ~ \tau \eta \varsigma ~ к i ́ v \eta \sigma \eta \varsigma ~ к \alpha ı ~ \varepsilon i ́ v \alpha ı ~ о ~$


## IP addressing





To RNC غ́ $\chi \varepsilon ı ~ \tau \rho \varepsilon ı \varsigma ~ \tau ט ́ \pi o v \varsigma ~ \delta ı \varepsilon v \theta ט ́ v \sigma \varepsilon ต v: ~$
 addresses) $\sigma \tau 0 \varepsilon \pi i ́ \pi \varepsilon \delta o \quad \chi \rho \eta ́ \sigma \tau \eta ~ \kappa \alpha ı ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \eta \pi ט ́ \lambda \eta ~ \varepsilon \xi$ óסov (gateways) $\gamma ı \alpha$ то $\varepsilon \pi i \pi \varepsilon \delta o ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \circ 0$
 $\varepsilon \pi i \pi \varepsilon \delta o \quad \varepsilon \lambda \varepsilon ́ \gamma \chi \circ 0$

$\Delta$ v́o $\delta \iota \omega \tau \iota \kappa \varepsilon ́ \varsigma ~ \delta ı \varepsilon v \theta o ́ v \sigma \varepsilon ı \varsigma ~ I P ~(p r i v a t e ~ I P ~ a d d r e s s e s) ~ \chi \rho \eta \sigma \mu о \pi о \imath о и ́ v \tau \alpha ı ~ \gamma ı \alpha ~ \tau \eta \nu ~ O \& M ~$

 бטvти́рŋбף тоv єка́бтотє Kó $\beta$ ßov B.

Mí IP $\delta \iota \varepsilon v ́ \theta v v \sigma \eta ~ \chi \rho \eta \sigma ч \mu о \pi о є \varepsilon i ́ \tau \alpha ı ~ \gamma ı \alpha ~ \tau \alpha ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha ~ \chi \rho \eta ́ \sigma \tau \eta ~ \kappa \alpha ı ~ \varepsilon \lambda \varepsilon ́ \gamma \chi о v . ~$

## IPBR

## IPBR (IP Based Route)

 (interfaces) о́лоv орí̧ovтаı oı IP $\delta \varepsilon \varepsilon v \theta v ́ v \sigma \varepsilon ı \varsigma ~ \tau о v ~ \varepsilon \pi ı \pi \varepsilon ́ \delta o v ~ \chi \rho \eta ́ \sigma \tau \eta . ~ H ~ \delta ı \alpha \mu o ́ \rho \varphi \omega \sigma \eta ~$ $\tau \omega v \varepsilon \pi ı \pi \varepsilon ́ \delta \omega v ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \gamma l \alpha ~ \tau \iota \varsigma ~ \lambda о \gamma ı \kappa \varepsilon ́ s ~ \delta \iota \varepsilon \pi \alpha \varphi \varepsilon ́ s ~ \delta ı \alpha \varphi o ́ \rho \omega v ~ U T R A N ~ \beta \alpha \sigma i ́ ̧ \varepsilon \tau \alpha ı ~ \sigma \tau \eta v$ $\varepsilon \iota \sigma \alpha \gamma \omega \gamma \eta ́ \tau \omega v \beta \alpha \sigma \iota \sigma \mu \varepsilon ́ v \omega v$ бто IP $\pi \rho \omega \tau$ о́ко $\lambda \lambda \frac{\delta \iota \alpha \delta \rho о \mu \omega ́ v(\text { (IP based routes). }}{\text { ) }}$
 RAN $\delta \iota \varepsilon \pi \alpha \varphi \mathfrak{c}$ (Iub (RBS - RNC, Iur (RNC - RNC), Iu-CS (Circuits Switced RNC MGW), and Iu-PS(Packet Switced RNC - SGSN) $\varepsilon \pi \imath \pi \varepsilon ́ \delta o v ~ \chi \rho \eta ́ \sigma \tau \eta . ~ E v ~ \gamma \varepsilon ́ v \varepsilon ı ~ \mu i ́ \alpha ~$ Ethernet $\delta \iota \varepsilon \pi \alpha \varphi \eta$ єvó̧ RNC $\mu \pi о \rho \varepsilon i ́ ~ \tau \alpha v \tau o ́ \chi \rho о v \alpha ~ v \alpha ~ \delta ı \alpha \chi \varepsilon ı \rho i \zeta \varepsilon \tau \alpha ı ~ \pi о \lambda \lambda \alpha \pi \lambda \alpha ́ ~ I P ~ b a s e d ~$
 Iur, Iu-CS, $\kappa \alpha \iota$ Iu-PS $\delta ı \pi \pi \alpha \varphi \omega ́ v$.

H $\varepsilon \lambda \alpha ́ \chi ı \tau \tau \eta ~ \delta ı \alpha \mu o ́ \rho \varphi \omega \sigma \eta \gamma \imath \alpha \mu i ́ \alpha$ IP based route $\delta i ́ v \varepsilon \tau \alpha ı \mu \varepsilon \mu i ́ \alpha$ IP $\delta ı \varepsilon v ́ \theta v v \sigma \eta \alpha v \alpha ́$



 $\delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta \varsigma ~ \kappa \alpha ı \tau \eta \varsigma ~ \varepsilon v i ́ \sigma \chi v \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma$.

## Xроvотроүро $\mu \mu \tau \iota \sigma \mu$ о́s (Scheduling)





 عıкóva.


Eıкóva 35: Архıтєктоvıкй Xроvoтроүраццатıбцои́
 $\delta ı \alpha \delta \rho о \mu \varepsilon ́ \varsigma . ~ Г \imath \alpha \tau \iota \varsigma$ Iur, Iu-CS к $\alpha \iota$ Iu-PS IP based routes, $\tau 0$ layer tov IP based route
 $\mu$ óvo $\alpha \pi$ ó $\tau$ o IP interface scheduler.


Eıкóva 36: Xроvотроүраццатıбرо́я

 бони́ $\pi \circ v$ 甲 $\alpha i ́ v \varepsilon \tau \alpha ı ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega . ~$


 $\alpha v \alpha \mu о v \eta ́ \varsigma ~ \mu \varepsilon$ ßáp (Weighted Fair Queuing, WFQ).



 $\gamma 1 \alpha$ тov̧ WFQ RNC IP interface $\chi \rho о v о \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau \varepsilon ́ \varsigma$

Mía $\lambda \varepsilon ı \tau о \cup \rho \gamma ı \kappa o ́ \tau \eta \tau \alpha$ Internal Flow Control (IFC= $\varepsilon \sigma \omega \tau \varepsilon \rho \iota \kappa o ́ \varsigma ~ \varepsilon ́ \lambda \varepsilon \gamma \chi \circ \varsigma ~ \rho о \eta ́ \varsigma) ~ \sigma \varepsilon$ ह́v $\alpha$ RNC $\beta \alpha \sigma \iota \sigma \mu \varepsilon ́ v \eta$ $\sigma \tau 0 \nu$ E-RED (Exponential Random Early Detection) $\alpha \lambda \gamma o ́ \rho \imath \theta \mu \mathrm{o}$,



 tov IP based route $\varepsilon$ v́pous 弓óvŋc. H RNC IP based route shaping functionality $\delta \varepsilon v$

 $\chi \rho о v о к \lambda i ́ \mu \alpha \kappa \alpha, ~ o ~ I P ~ b a s e d ~ r o u t e ~ \rho v \theta \mu o ́ s ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \pi \alpha ́ \varepsilon ı ~ к \alpha ı ~ \psi \eta \lambda o ́ t \varepsilon \rho \alpha . ~ H ~$ $\mu о \rho \varphi о \pi о і ́ \eta \sigma \eta ~ \tau \eta \varsigma ~ \delta \iota \varepsilon \pi \alpha \varphi \eta ́ \varsigma ~ \varepsilon \kappa \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha \iota ~ \sigma \varepsilon$ hardware.

## DiffServ DSCP mapping


 (Differentiated Services Code Point). T $\alpha \varepsilon \xi \varepsilon \rho \chi o ́ \mu \varepsilon v \alpha$ IP $\pi \alpha \kappa \varepsilon ́ \tau \alpha ~ \sigma \eta \mu \alpha \delta \varepsilon v ́ o v \tau \alpha ı \mu \varepsilon$ ह́v $\alpha$
 $\sigma \tau \eta \nu \operatorname{IPv} 4 \varepsilon \pi \iota \kappa \varepsilon \varphi \alpha \lambda i ́ \delta \alpha$.

## Iub DSCP mapping at RNC



 UMTS (Universal Mobile Telecommunications System=Паүкóб $\mu$ ıo $\Sigma v ́ \sigma \tau \eta \mu \alpha$


Access Network Application Part) $\gamma \iota \alpha$ тo SRNC (Serving RNC) $\kappa \alpha \iota ~ \tau о \cup ~ \pi \rho \omega \tau о к o ́ \lambda \lambda о v$ RNSAP (Radio Network Subsystem Application Part) $\gamma \iota \alpha$ to DRNC (Drift RNC). Пı
 סúo DSCP: $\varepsilon$ v́v $\gamma \iota \alpha \tau \eta \nu$ HSDPA (High-Speed Downlink Packet Access) $\kappa \alpha \imath \gamma 1 \alpha \tau \eta \nu$ HSUPA (High-Speed Uplink Packet Access) кívŋণŋ $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \kappa \alpha ı ~ \varepsilon ́ v \alpha ~ \gamma ı \alpha ~ \tau \eta v ~ N R T ~$

 Time) DCH кívŋซף.

 $\tau \eta \nu$ BFD (Bidirectional Forwarding Detection) кívๆбๆ. T $\alpha$ DSCP $\pi \circ v$ عívaı $\gamma \downarrow \alpha$ v $\alpha$ $\chi \rho \eta \sigma \mu о \pi о \nmid \theta$ ov́v $\gamma 1 \alpha \tau \eta v$ OSPF (Open Shortest Path First) каı $\tau \eta v$ ICMP (Internet
 Елıл $\lambda \varepsilon ́ \sigma v, \mu \varepsilon \tau \alpha \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \alpha$ еvєрүолот $\mu \varepsilon ́ v \alpha$ र $\alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau \iota \kappa \alpha ́ ~ \varepsilon i ́ v \alpha ı ~ \pi \imath \theta \alpha v o ́ ~ v \alpha$ $\delta \eta \mu$ оор $\gamma \eta \theta \varepsilon i ́ \operatorname{DSCP} \sigma \eta ́ \mu \alpha \tau \alpha \sigma \eta \mu \alpha \tau о \delta о \sigma i ́ \alpha \varsigma$ NBAP .

## Iub DSCP mapping at RNC with Iub Transport QoS feature





 domain) $\sigma v \vee \delta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v, ~ \tau о ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau ı к o ́ ~ \alpha v \tau o ́ ~ \varepsilon \pi ı \tau \rho \varepsilon ́ л \varepsilon ı ~ \tau \eta v ~ \varepsilon v Ө v \gamma \rho \alpha ́ \mu \mu ı \sigma \eta ~$ $\tau \eta \varsigma \mu \varepsilon \tau \alpha \chi \varepsilon i ́ p ı \sigma \eta \varsigma ~ \tau o v ~ I u b ~ T r a n s p o t ~ N e t w o r k ~ L a y e r ~(T N L) ~ \beta \alpha ́ \sigma \eta \varsigma ~ \tau \eta ~ \sigma \tau \rho \alpha \tau \eta \gamma ı к \eta ́$



 $\varepsilon \iota \sigma \alpha ́ \gamma о \nu \tau \alpha 1$.


 Bearer). $\Sigma$ тo RNC, oו $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \gamma 1 \alpha ~ \tau o ~ T r a f f i c ~ C l a s s ~(T C), ~ T r a f f i c ~ H a n d l i n g ~$ Priority (THP) кal Allocation and Retention Priority (ARP) бто UMTS $\pi \circ$ $\lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \iota \alpha \pi o ́ ~ \tau о ~ C N ~ \alpha v \tau ı \sigma \tau о \chi i ́ \zeta o v \tau \alpha ı, ~ \sigma \tau о ~ R N L, ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha ~ \sigma \varepsilon \tau ~ \alpha \pi o ́ ~ 16 ~ \delta ı \alpha \varphi о \rho \varepsilon \tau ı к \alpha ́ ~$ RNL $\varepsilon \pi i ́ \pi \varepsilon \delta \alpha$. H $\alpha \nu \tau \iota \sigma \tau o i ́ \chi ı ŋ \eta ~ \tau \omega \nu$ QoS $\pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho \omega \nu$ TC (Traffic Class), ARP (Allocation Retention Priority) к $\alpha \downarrow$ THP (Traffic Handling Priority) $\sigma \tau \alpha \pi \varepsilon \delta i ́ \alpha$ $\pi \rho о \tau \varepsilon \rho \alpha \ldots \tau \eta ์ \tau \omega v ~ \tau o v ~ Q o S ~ \alpha ́ \pi \tau о v \tau \alpha ı ~ \sigma \tau о v ~ o p e r a t o r ~(\delta ı \alpha \chi \varepsilon \iota \rho ı \tau \tau ́ ~ C o s m o t e ~-~ V D F ~-~$

 Speed Dedicated Channel - Downlink Shared Channel / Enhanced Dedicated

 чорє́ $\eta$ олоі́ $\alpha \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \chi \rho \eta \sigma \mu о \pi о џ \eta \theta \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \lambda \varepsilon ı \tau о ט \rho \gamma i ́ \varepsilon \varsigma ~ \tau о ט ~ R R M ~(R a d i o ~$




## Iub DSCP mapping at WBTS




 $\qquad$ . $\Gamma 1 \alpha$ đovs 甲opsís


 FP $\rho v \theta \mu i ́ \zeta \varepsilon \tau \alpha \iota ~ \sigma \tau о ~ R N C ~ \kappa \alpha ı ~ \sigma \eta \mu \alpha \tau о \delta о \tau \varepsilon i ́ \tau \alpha ı ~ \sigma \tau о \nu ~ \Sigma B . ~$

HSDPA UL FP data: тo DSCP $\varepsilon \pi \imath \lambda \varepsilon ́ \gamma \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau \alpha ~ \chi \alpha \rho \alpha к \tau \eta \rho ı \tau \tau ı \alpha ́ ~ \tau o v ~ R A B ~ \sigma \tau о ~ R N C ~$ $\kappa \alpha ı ~ \sigma \eta \mu \alpha \tau о \delta о \tau \varepsilon i ́ \tau \alpha ı \sigma \tau \circ \nu \Sigma B$.
 бך $\mu \alpha \tau$ обобías عíval $\delta ı \alpha \rho \theta \rho \omega ́ \sigma \not \mu o$.

## ПАРАМЕТРОПОIHГH KINH工HГ (TRAFFIC PARAMETERIZATION)

Паро́ $\mu$ оı $\alpha \mu \varepsilon$ то $\mu \varepsilon$ то $\tau \imath ~ \sigma v \mu \beta \alpha i ́ v \varepsilon ı ~ \sigma \tau \eta \nu ~ \beta \alpha \sigma \iota \mu \mu \varepsilon ́ v \eta ~ \sigma \tau \eta \nu ~ A T M ~ \tau \varepsilon \chi v o \lambda o \gamma i ́ \alpha ~ I u b ~$


 (Wideband Code Division Multiple Access - 3G $\delta \lambda \delta$ ) $\sigma v ́ \sigma \tau \eta \mu \alpha$, ó $\sigma o v \alpha \varphi o \rho \alpha ́ ~ \sigma \tau \eta v$
 CAC عívaı $\mu i ́ \alpha ~ \pi о \lambda v ́ ~ \sigma \eta \mu \alpha \nu \tau \iota \kappa \eta ́ ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta ~ \sigma \tau о ~ W C D M A ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \gamma ı \alpha ~ v \alpha ~ \varepsilon \gamma \gamma v \eta \theta \varepsilon i ́ ~ \tau \eta v$






тovs $\delta 1 \alpha \theta \varepsilon ́ \sigma \not \mu o v s ~ \pi o ́ \rho o v s ~ \tau \eta \varsigma ~ \delta ı \varepsilon \pi \alpha \varphi \eta ́ \varsigma ~ I u b . ~ M \varepsilon ~ \alpha v \tau o ́ v ~ \tau o v ~ \tau \rho o ́ \pi о, ~ \mu \pi \rho о \sigma \tau \alpha ́ ~ \sigma \tau о v ~$



H $\lambda \varepsilon ı \tau \circ \cup \rho \gamma i ́ \alpha \alpha \cup \tau \eta ́(C A C ~ \sigma \tau \alpha$ UTRAN NEs) $\varepsilon v \varepsilon \rho \gamma \varepsilon i ́ ~ \pi \alpha \rho \alpha ́ \lambda \lambda \lambda \eta \lambda \alpha \kappa \alpha ı ~ \alpha \lambda \lambda \eta \lambda \varepsilon ́ v \delta \varepsilon \tau \alpha \mu \varepsilon$ $\tau \eta \nu \lambda \varepsilon \iota \tau o v \rho \gamma i ́ \alpha$ CAC $\sigma \tau о \sigma \tau o \mathrm{RF}$ (Radio Frequency) $\pi \varepsilon \delta$ ío $\tau \eta \varsigma \pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma$ ( $\Delta \varepsilon \iota \pi \alpha \varphi \eta$


 $\kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon เ \varsigma ~ \sigma \nu \mu \varphi o ́ \rho \eta \sigma \eta \varsigma$.



1. CAC control traffic, $\mu \varepsilon \varepsilon \gamma \gamma \cup \eta \mu \varepsilon ́ v o v s ~ \pi o ́ \rho o u \varsigma ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma . ~$
2. Non-CAC control traffic, ó $\pi$ ov ol $\pi o ́ \rho o ı ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha l ~ \varepsilon \gamma \gamma ט \eta \mu \varepsilon ́ v o l . ~$


 $\tau \eta \nu \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho о$ CommBitRate.



 $\alpha \varphi o \rho \alpha ́ ~ \sigma \tau \eta \nu$ CAC $\lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha:$

- RT DCH: R99 CS traffic (DSCP High)
- nRT DCH: R99 PS traffic (DSCP Medium DCH)
- Transport Common Channels (RACH, FACH \& PCH) (DSCP Medium DCH)
- HSPA Streaming (DSCP Medium HSPA)
- NodeB signaling (NBAP)
- O\&M
-Ф@vŋ́ бтo R99 (UMTS Release 99)
- $\Delta \varepsilon \delta$ oućva $\sigma \tau$ R R99 (UMTS Release 99)
- Koıvá каvá $\lambda 1 \alpha$ Metóסooŋๆs
- HSPA poף́
- $\Sigma \eta \mu \alpha \tau$ oסooí $\alpha$ Node B
- O\&M
 $\pi \alpha \rho \alpha \gamma \rho \alpha ́ \varphi o v \varsigma$.


Elkóva 37: CAC \& Shaping (downlink)


Eıóvo 38Q CAC \& Shaping (uplink)




 $\beta \gamma \alpha i ́ v \varepsilon \imath ~ \alpha \pi o ́ ~ \tau o ~ W B T S ~ \mu \varepsilon ́ \sigma \omega ~ \mu ı \alpha \varsigma ~ \mu \varepsilon \mu о v \omega \mu \varepsilon ́ v \eta ~ \theta o ́ \rho \alpha . ~ A v \tau ı \theta \varepsilon ́ \tau \omega \varsigma, ~ \sigma \tau о ~ D L, ~ \mu 1 \alpha ~$


 то CAC $\lambda \varepsilon \iota \tau о \cup \rho \gamma \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho o v \varsigma ~ \pi о v ~ o \rho i ́ ̧ o v \tau \alpha ı ~ \gamma ı \alpha ~ \tau \eta ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \eta ~ \delta \alpha \alpha \delta \rho о \mu \eta$ IP.







 $\theta \alpha$ گєкıvŋ́бєı $\alpha \pi о \rho \rho i ́ \pi \tau о \nu \tau \alpha \varsigma ~ \pi \rho ต ́ \tau \alpha ~ \tau \eta \nu ~ к і ́ v \eta \sigma \eta ~ \pi о v ~ \chi \alpha \rho \alpha к \tau \eta \rho i ́ \zeta \varepsilon \tau \alpha ı ~ \omega \varsigma ~ \lambda \imath \gamma о ́ \tau \varepsilon \rho о ~$ крíбчиך ( $\chi \alpha \mu \eta \lambda$ о́тєр $\pi \rho о \tau \varepsilon \rho \alpha$ ıóт $\eta \tau \alpha)$.

## ГҮМПЕРАГМАТА - ПРООПТІКЕГ

O $\sigma \omega \sigma \tau o ́ \varsigma ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ \varsigma ~ \kappa \alpha ı ~ \eta ~ \sigma \omega \sigma \tau \eta ́ ~ v \lambda о \pi о i ́ \eta \sigma \eta ~ \varepsilon \pi \alpha \lambda \eta \theta \varepsilon v ́ o v \tau \alpha ı ~ \pi \alpha ́ v \tau \alpha ~ \alpha \pi o ́ ~ \tau \iota \varsigma ~ O T D R ~$



 $\pi \lambda \varepsilon ́ o v ~ \sigma \varepsilon ~ \mu i ́ \alpha ~ " m o b i l e ~ b r o a d b a n d " ~ \varepsilon \pi о \chi \eta ́ . ~ A v \tau \eta ́ ~ \eta ~ \alpha v \alpha ́ \gamma к \kappa \eta ~ \gamma ı \alpha ~ \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta ~ \tau \omega v$

 $100 \% ~ \eta \pi \lambda \eta \rho o ́ \tau \eta \tau \alpha$.
 $\mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma . ~ Г ı \alpha ~ \tau о ~ \lambda o ́ \gamma o ~ \alpha v \tau o ́ ~ \alpha ́ \lambda \lambda \omega \sigma \tau \varepsilon ~ \varepsilon ́ \chi o v v ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \tau \varepsilon \varepsilon i ́ ~ к \alpha ı ~ \omega \varsigma ~ \Delta i ́ \kappa \tau v \alpha ~ E \pi o ́ \mu \varepsilon v \eta \varsigma ~$ Гعviác (Next Generation Networks, NGN) каı $\varepsilon \mu \varphi \alpha v ต ́ \varsigma, ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \alpha v o \chi \chi o ́ ~$



## ПАРАРТНМА 1

## MHXANHMATA $\Delta I K T Y O \Upsilon$



Eıкóva 39: От兀ıко́ৎ катаvєцŋтท́ৎ $\sigma \varepsilon$ hub ( $\alpha$ )







## ОПТІКЕГ КАРТЕГ

## XAPAKTHPILTIKA OПTIKתN KAPTתN TOY $\Delta I K T Y O Y: ~$

| Unit Description | Wave-Length | ID | Transmitter Optical Power 0/P Level Range |  | Receive Optical Power Optical Power Limits I/P Level Range |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  | Max (dBm) | Min (dBm) | Max (dBm) | Min (dBm) |
| STM-1 Trib (Hot-plug module) STM-1 Trib/LTU (SFP) <br> Fast Eth 100M Opt. LTU (SFP) Fast Eth 100M Opt. LTU (SFP) <br> MRV - EM316FRM/S/S2 <br> MRV - EM316EFRMABSH | 1310 nm | I-1.1 | -8,0 | -15,0 | -8,0 | -23,0 |
|  | 1310 nm | S-1.1 | -8,0 | -15,0 | -8,0 | -28,0 |
|  | 1310 nm | L-1.1 | 0,0 | -5,0 | -10,0 | $-34,0$ |
|  | 1550 nm | L-1.2 | 0,0 | $-5,0$ | -10,0 | $-34,0$ |
| STM-4 Line/tributary (SFP) | 1310 nm | I-4.1 | -8,0 | -15,0 | -8,0 | -23,0 |
|  | 1310 nm | S-4.1 | -8,0 | -15,0 | -8,0 | -28,0 |
|  | 1310 nm | L-4.1 | 2,0 | -3,0 | -8,0 | -28,0 |
|  | 1550 nm | L-4.2 | 2,0 | -3,0 | -8,0 | -28,0 |
| STM-16 Line/tributary (Fixed) STM-16 Line/tributary (SFP) STM-16 Core (SFP) | 1310 nm | I-16.1 | -3,0 | -10,0 | -3,0 | -18,0 |
|  | 1310 nm | S-16.1 | 0,0 | -5,0 | 0,0 | -18,0 |
|  | 1310 nm | S-16.1 | 0,0 | $-5,0$ | 0,0 | -18,0 |
|  | 1310 nm | L-16.1 | 3,0 | -2,0 | -9,0 | -27,0 |
|  | 1310 mm | L-16.1 | 3,0 | $-2,0$ | -9,0 | -27,0 |
|  | 1550 nm | L-16.2 | 3,0 | -2,0 | -9,0 | -28,0 |
|  | 1550 nm | L-16.2 | 3,0 | $-2,0$ | -9,0 | -28,0 |
|  | 1550 nm | JE-16.2 | 8,2 | 5,3 | $-6,0$ | -28,0 |
| Gigabit Ethernet Unit (SFP) | 850 nm | 1000BASE-SX | -4,0 | -9,5 | 0,0 | -17,0 |
|  | 1310 nm | 1000BASE-LX/LH | -3,0 | -11,0 | -3,0 | -19,0 |
|  | 1550 nm | 1000BASE-ZX | 3,0 | $-2,0$ | -3,0 | -24,0 |
| STM-64 Line (XFP) | 1310 nm | I-64.1 | $-1,0$ | $-6,0$ | -1,0 | -11,0 |
|  | 1550 nm | 5-64.2b | 2,0 | $-1,0$ | -1,0 | -14,0 |
|  | 1550 nm | L-64.2 | 4,0 | 0,0 | -7,0 | -24,0 |



## ПАРАДЕІГМАТА ОПTIKЛN KAPTתN TOY $\Delta I K T Y O Y: ~$



## Eıко́v $\alpha$ 44: Олтıкท́ ка́ $\tau_{\alpha}(\alpha)$

- TDM networks
- IP/Eth networks (CES over PSN / Native IP)
- Ethernet switching
- Supported interfaces
$-2 x$ GE**/FE electrical ports
- 1x GE/FE optical port (with pluggable SFP)

- 4x unbalanced 75ohm E1 interfaces
- 4x balanced 120/100ohm E1/T1 interfaces


1) $2 x$ GE electrical or $1 \times$ GE electrical $+1 \times$ GE optical via optional SFP module
2) For synchronization, CESoPSN
3) IPsec HW capability: 160 Mbit/s DL+UL

For SW support please check roadmap summary page

Eıкóv $\alpha$ 46: Ожтıки́ ко́ $\rho \tau \alpha$ (ү)


Eıкóva 47: Олтıкท́ ка́рта ( ( )

## ПАРАРТНМА 3

## METPHEEIL OTDR

48 focable $\mathbf{B}$ то $\mathbf{A}$

| File : Date : | fibersm002_310e.sor | Device : | MTS 8000 Num. 1378 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 12/12/2011 3:15:30 ì | Module : | 8136HD Num. 743 |  |
| Comifuration |  |  |  |  |
| Technic. : |  | Way : | O-->E | Backscatter coeff.: $\quad-79,00 \mathrm{~dB}$ |
| ORIGIN |  | Origin : | B_A 2 | Loss thresholds : $\quad \mathrm{No}(\mathrm{H}-\mathrm{M})$ |
| Cable : | SM | End: |  | Slope thresholds: $\quad 0,000 \mathrm{~dB} / \mathrm{km}$ |
| Fiber: | B_A 2 | W avelength ( nm ) | : 1319 | Reflectance threshold : All (H-M) |
| Color : |  | Index: | 1,465000 |  |
| END |  | Pulse (ns) : | 100 |  |
| Cable : | SM | Range (km) : | 20,464 |  |
| Fiber: | B_A 2 | Acq. time : | 10 s |  |
| Color : |  | Resolution : | 2,50 m |  |

Comment :


Eıкóv $\alpha$ 48: Métpŋ〒ŋ OTDR (1319nm)

## 48 FO CABLE $\mathbf{B}$ то $\mathbf{A}$

| File: | fibersm002_550e.sor | Device: | MTS 8000 Num. 1378 |  |
| :---: | :---: | :---: | :---: | :---: |
| Date: | 12/12/2011 3:15:04 ii | Module : | 8136HD Num. 743 |  |
| Contiguration |  |  |  |  |
| Technic. : |  | Way: | O-->E | Backscatter coeff.: $\quad-81,00 \mathrm{~dB}$ |
| ORIGIN |  | Origin : | B_A 2 | Loss thresholds: $\quad \mathrm{No}(\mathrm{H}-\mathrm{M})$ |
| Cable : | SM | End: |  | Slope thresholds : $0,000 \mathrm{~dB} / \mathrm{km}$ |
| Fiber : | $B \_A 2$ | Wavelength ( nm ) | : 1558 | Reflectance threshold : All (H-M) |
| Color : |  | Index: | 1,465000 |  |
| END |  | Pulse ( ns ) : | 30 |  |
| Cable : | SM | Range (km) : | 20,464 |  |
| Fiber: | $B$ _ ${ }^{2}$ | Acq. time: | 10 s |  |
| Color: |  | Resolution: | 1,25 m |  |

Comment :


Eıкóva 49: Eıкóva 45: Métøŋণŋ OTDR (1558nm)

## 48 focable $\mathbf{B}$ то $\mathbf{A}$

| File : Date : | $\begin{aligned} & \text { fibersm002_62oe.sor } \\ & 12 / 12 / 20113: 15: 17 \text { ì̀ } \end{aligned}$ | Device : <br> Module : | MTS 8000 Num. 1378 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8136HD Num. 743 |  |
| Contiguration |  |  |  |  |
| Technic. : |  | Way: | O-->E | Backscatter coeff.: $\quad-81,00 \mathrm{~dB}$ |
| ORIGIN |  | Origin : | B_A 2 | Loss thresholds : $\quad \mathrm{No}(\mathrm{H}-\mathrm{M})$ |
| Cable : | SM | End: |  | Slope thresholds : $0,000 \mathrm{~dB} / \mathrm{km}$ |
| Fiber : | $B$ _ $A 2$ | W avelength ( nm ) | : 1620 | Reflectance threshold : All (H-M) |
| Color : |  | Index: | 1,465000 |  |
| END |  | Pulse (ns) : | 10 |  |
| Cable : | SM | Range (km) : | 20,464 |  |
| Fiber : | $B$ _ 22 | Acq. time : | 10 s |  |
| Color: |  | Resolution : | $64,00 \mathrm{~cm}$ |  |

Comment :


Eıкóva 50: Eıкóva 45: Mźтןŋণף OTDR (1620nm)

## METPHLH LINK POWER BUDGET



Eıкóva 51: Métpŋoŋ Link Power Budget

## ПАРАРТНМА 5

## OSPInSight



Eıкóva 52: OSPInSight

## ВІВАІОГРАФІА

- The Fiber Optic Association, Inc., "Guide To Fiber Optic Network Design"


 'Екбобך

 3 (Layer-3)"
- http://adtran.com/mobile , "Fiber to the Cell Site "
- CISCO VNI Mobile 2011


## £ฯNTOMOГРАФІЕ

| ARP | Allocation and Retention Priority |
| :--- | :--- |
| AF | Assured Forward |
| BTS | Base Tranceiver Station |
| BE | Best Effort |
| BFD | Bidirectional Forwarding Detection |
| BER | Bit Error Rate |
| CAC | Call Admission Control |
| CBCH | Cell Broadcast Channel |
| CO | Central Office |
| CSM | Central Strength Member |
| C-NBAP | Common Node B Application Part |
| CN | Core Network |
| DCH | Dedicated Channel |
| D-NBAP | Dedicated Node B Application Part |
| DiffServ | Differentiated Services |
| DSCP | Differentiated Services Code Point |
| DSCH | Downlink Shared Channel |
| DRNC | Drift Radio Network Controller |
| ETDM | Electronic Time Division Multiplex |
| EF | Expedited Forward |
| E-RED | Expontential Random Early Detection |
| FRP | Fiber Reinforced Plastic |
| FTTx | Fiber to the x |
| FIFO | First in, First out |
| FACH | Forward Access Channel |
| FEC | Forward Error Correction |
| FP | Frame Protocol |
| GPON | Gigabit Passive Optical Network |
| HDPE | High Density Polyethulene |
| HSDPA | High Speed Downlink Packet Access |
| HSUPA | High Speed Uplink Packet Access |
| ICMP | Internet Control Message Protocol |
| IFC | Internet Flow Control |
| IP | Internet Protocol |
| Ipv4 | Internet Protocol version 4 |
| IPBR | IP Based Route |
| MWW | Microwave |
| MMF | Multi Mode Fiber |
| NQMS | Network Quality Monitoring Systems |
| NGN | Next Generation Networks |
| NBAP | Node B Application Part |
| Non-CAC | Non Call Admission Control |
| NRT | Not Real Time |
|  |  |


| OSPF | Open Shortest Path First |
| :--- | :--- |
| O\&M | Operation \& Maintenance |
| OA\&M | Operation, Administration \& Management |
| OPEX | Operational Expenses |
| ODF | Optical Distributor Fiber |
| OTDM | Optical Time Division Mulitplex |
| OTDR | Optical Time Domain Reflectometer |
| PS | Packet Switched |
| PHB | Per Hop Behaviour |
| PB | Priority Bit |
| QoS | Quality of Service |
| RAB | Radio Access Bearer |
| RANAP | Radio Access Network Application Part |
| RNC | Radio Network Controller |
| RNL | Radio Network Layer |
| RNSAP | Radio Network Subsystem Application Part |
| RACH | Random Access Channel |
| RTFS | Remote Fiber Test System |
| RTU | Remote Telemetry or Terminal Unit |
| NPGEP | RNC's card |
| SRNC | Serving Raadio Network Controller |
| SMF | Single Mode Fiber |
| SCTP | Stream Control Transmission Protocol |
| SP | Strict Priority |
| TDMA | Time Division Multiple Access |
| TDM | Time Division Multiplexing |
| TC | Traffic Class |
| THP | Traffic Handling Priority |
| TCP | Transmission Control Protocol |
| TNL | Transport Network Layer |
| ToS | Type of Service |
| UTRAN | UMTS Terrestial Radio Access Network |
| UMTS | Universal Mobile Telecommunications |
| UDP | System |
| UE | User Datagram Equipment |
| VLAN | User Equipment |
| WDM | Virtual Local Area Network |
| WFQ | Wavelength Division Multiplex |
| WBTS | Weighted Fair Queuing |
| WCDMA | Wideband Base Tranceiver Station |
| Wideband Code Division Multiple Access |  |
|  |  |

