TEXNOДOГIKO EKПAIДEYTIKO IДPYMA MEटOДOГГIOY

 TMHMA THAEПIKOIN $\Omega N I A K \Omega N ~ \Sigma Y \Sigma T H M A T \Omega N ~ \& ~$ $\Delta I K T Y \Omega N$
ПTYXIAKH ЕРГАЕIA

 $\varepsilon \nu \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \eta$ FPGA"

$\Delta \varepsilon \delta o v ́ \sigma \eta \varsigma \Delta \eta \mu \eta ́ \tau \rho 1 \circ \varsigma$

Про́доүоя

 $\alpha \delta \varepsilon \rho \varphi \eta$ иоv $\Delta \alpha v \alpha ́ \eta ~ \gamma l \alpha ~ \tau \eta \nu ~ \sigma v v \varepsilon \chi \eta ́ ~ \sigma \tau \eta ́ \rho ı \xi ŋ \eta ~ \pi o v ~ \mu o v ~ \varepsilon ́ \delta ı v \alpha v . ~$

Пعрі́入ך廿ך

 pixel，$\mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta \nu ~ \varepsilon ı \kappa o ́ v \alpha ~ \pi о v ~ \varphi \tau \alpha ́ v \varepsilon ı ~ \sigma \tau o v ~ \tau \varepsilon \lambda ı \kappa o ́ ~ \chi \rho \eta ́ \sigma \tau \eta . ~ H ~ \varepsilon ı \kappa o ́ v \alpha ~ \alpha \pi o ́ ~ \tau \eta v ~ F P G A ~$
 vлодоүıбтŋ́s $\varepsilon \mu \varphi \alpha v i ́ \zeta \varepsilon ı ~ \tau \eta v ~ \varepsilon ı к о ́ v \alpha ~ \sigma \tau о v ~ \chi \rho \eta ́ \sigma \tau \eta . ~ М \varepsilon ~ \mu ı \alpha ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta ~ \delta ı \alpha \sigma ט ́ v \delta \varepsilon \sigma \eta ~ \eta ~ о \pi о i ́ \alpha ~ \varepsilon i ́ v \alpha ı ~$ бєıрюкŋ́（UART）о $\chi \rho \eta ́ \sigma \tau \eta \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \alpha \lambda \lambda \alpha ́ \xi ॄ \varepsilon ı ~ \tau ı \varsigma ~ \lambda \varepsilon ı \tau о v \rho \gamma i ́ \varepsilon \varsigma ~ \tau ı \varsigma ~ \kappa \alpha ́ \mu \varepsilon \rho \alpha \varsigma ~ o ́ \pi \omega \varsigma ~ \tau о ~ \alpha ́ v o \succ \gamma \mu \alpha$
 тоv $\alpha v \alpha ́ \gamma к \varepsilon \varsigma$.

 $\alpha \dot{\alpha} \lambda \lambda_{0} \chi \rho \omega ́ \mu \alpha$ ．

ミкото́s $\alpha v \tau \eta ́ \varsigma ~ \tau \eta \varsigma ~ \pi \tau v \chi 1 \alpha \kappa \eta ́ s ~ \varepsilon р \gamma \alpha \sigma i ́ \alpha s ~ \varepsilon i ́ v \alpha ı ~ \eta ~ v \lambda о \pi о i ́ \eta \sigma \eta ~ \alpha \lambda \gamma о \rho i ́ \theta \mu \omega v ~ \sigma \varepsilon ~ \gamma \lambda \omega ́ \sigma \sigma \alpha$

 ко́ккıvа．

Abstract

For the implementation of the experiment that took place in this thesis, a CMOS technology camera with an embedded FPGA was used. Each of the three basic colors (red green - blue) that the camera detects are sent to the FPGA which transforms the colors by mixing them and therefore creates a new color that is placed on a particular pixel in the picture that the end user receives. The image that the FPGA sends is transported to the end user's computer via Ethernet port and finally, it appears on the end user's screen. Furthermore and in order for the user to change the functions of the camera, such as opening and closing the shutter and managing to adjust the camera depending on the needs of the end user, a second serial connection (UART) is used.

The environment in which the experiment takes place has as a requirement the existence of white light. By choosing to work only with white light, the camera is able to function based on the white light instead of any other color-based light.

In conclusion, the purpose of this thesis is the implementation of algorithms in C programming language, which can detect colors and calculate the center of an object that has been recognized as red. Thus, an algorithm for calculating the center of multiple objects is being developed.

Пعрıєұо́ $\mu \varepsilon v \alpha$

Еıбоүตүŋ́ 1
 3
1．1．Eıб $\alpha \gamma \omega \gamma \eta$ 3
1．2．Tí ε ívaı $\tau \alpha$ عvб $\omega \mu \alpha \tau \omega \mu \varepsilon ́ v \alpha ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha$ 3
1．2．1．Х $Х \eta ́ \sigma \eta \tau \omega v \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \omega v ~ \sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v$ 4
 4
1．2．3．П入и́ $\rho \varepsilon \varsigma ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o ~ \sigma ט ́ \sigma \tau \eta \mu \alpha$ 5
 5
 6
1．4．Tí हívaı $\mu l \alpha$ FPGA 7
1．5．Tí $\varepsilon i ́ v a ı ~ \tau \alpha ~ A S I C ~$ 8
 11
Арұıтєктоу⿺кฑ́ ข入ıкои์ 12
2．1．Еı $\sigma \alpha \gamma \omega \gamma \eta$ 12
 12
2．3．Teरvoдoүía CMOS 14
2．3．1．Характпрıттєќ тєұvoえоүías CMOS 15
 16
2．4．1．Тро́тоৎ $\lambda \varepsilon \iota \tau о \cup \rho \gamma i ́ a \varsigma ~$ тоט ঠıаv́доv I2C 17
 18
2．5．Oıкоүદ́veı α Spartan－3 $\mathrm{\eta} \mathrm{\eta} \mathrm{\varsigma}$ Xilinx 20
Пирŋ́vєऽ єлєรєрү $\alpha \sigma \tau \omega ้$ 21
3．1．Eı $\sigma \alpha \gamma \omega \gamma \eta$ 21
3．2．Aрұıєєктоvıки́ RISC каı CISC 21
 24
 25
3．4．Tí ε ívaı oı Soft－Core $\varepsilon \pi \varepsilon \xi \varepsilon \propto \gamma \alpha \sigma \tau \varepsilon ́ \varsigma$, 27
3．5．O єлє $\varepsilon \rho \gamma \alpha \sigma \tau \emptyset \varsigma$ SPARC 27
3.6. Характпрıбтько́ тоv LEON 2 30
Ерү $\alpha \lambda \varepsilon i ́ \alpha \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu о v ์ \tau 0 v \sigma v \sigma \tau \eta ́ \mu \alpha \tau 0 \varsigma$ 32
4.1. Еıб $\alpha \gamma \omega \gamma \eta$ ' 32
4.2. $\Lambda \varepsilon \iota \tau o v \rho \gamma i ́ \alpha ~ \varepsilon v o ́ \varsigma ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \eta ́ ~(C o m p i l e r) ~$ 32
 34
4.2.2. $\quad \Pi \dot{\varsigma ~} \lambda \varepsilon \iota \tau \circ \cup \rho \gamma \varepsilon i ́ ~ \eta ~ \delta ı \alpha \mu \varepsilon \tau \alpha \gamma \lambda \omega ́ \tau \tau \iota \sigma \eta$ 35
4.3. $\mathrm{H} \gamma \lambda \dot{\omega} \sigma \sigma \alpha \pi \rho \sigma \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu о v ́ \mathrm{C}$ 36
4.4. Avapo $\alpha \dot{\sigma} \sigma \tau 0$ RTEMS 39
4.5. О $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau 1 \sigma \tau \eta ์ \varsigma$ GCC 40
 41
4.6. To тєр $\mu \alpha \tau$ кќ Cygwin 42
Хрюцатько́ $\mu о v \tau \varepsilon ́ \lambda о ~ к \alpha ́ \mu \varepsilon \rho \alpha \varsigma ~ к \alpha 兀 ~ W h i t e ~ b a l a n c e ~$ 44
5.1. Еıб $\alpha \gamma \omega \gamma \eta$ 44
5.2. To $\chi \rho \omega \mu \alpha \tau \iota к o ́ ~ \mu о v \tau \varepsilon ́ \lambda o ~ R G B ~$ 44
 48
5.4. Automatic White Balance Estimator - Perfect Reflector 49
 51
6.1. Eı $\sigma \gamma \boldsymbol{\sigma} \boldsymbol{\eta}$ 51
6.2. Av $\alpha \gamma \vee \omega ́ \rho \iota \sigma \eta \chi \rho \omega ́ \mu \alpha \tau \sigma \varsigma$ 51
 53
6.4. Connected Component Labeling (CCL) 54
$\Sigma \nu \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$ к $\alpha \iota \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha \pi о v \alpha v \tau \iota \mu \varepsilon \tau \omega \pi i ́ \sigma \tau \eta \kappa \alpha v$ 56
Прото́бєıऽ $\gamma เ \alpha \pi \varepsilon \rho \alpha \iota \tau \varepsilon ́ \rho \omega$ غ́р $\varepsilon v v \alpha$ 57
Пívaкая бvvтоноүрарıஸ́v 58
Bı $\beta \lambda ı \gamma \rho \alpha, \varphi$ í 60
 61
Паро́рт $\boldsymbol{\mu} \alpha$ А 63

Еı $\sigma \alpha \gamma \omega \gamma \dot{\eta}$

 кон $\mu \alpha ́ \tau \iota ~ \sigma \tau о ~ \pi \varepsilon \delta i ́ o ~ \tau \eta \varsigma ~ \varepsilon ́ \rho \varepsilon v v \alpha \varsigma . ~ ' E \chi \varepsilon ı ~ \mu \varepsilon \theta o ́ \delta o v \varsigma ~ \gamma ı \alpha ~ \tau \eta \nu ~ \alpha v \alpha ́ \lambda v \sigma \eta, ~ \tau \eta \nu ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \kappa \alpha ı ~ \tau \eta \nu$

 в $\rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \varepsilon i ́ v \alpha ı ~ \alpha \rho \kappa \varepsilon \tau \alpha ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda о . ~ ' Е \tau \sigma ı ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \omega v ~ \sigma \nu \sigma \tau \eta \mu \alpha ́ \tau \omega v ~ \varepsilon i ́ v \alpha ı ~ \alpha \rho \kappa \varepsilon \tau \alpha ́ ~$ бט́vŋ $\theta \varepsilon \varsigma ~ \varphi \alpha ı$ ó $\mu \varepsilon v o$.

 $\alpha \nu \alpha \gamma v \omega \rho \iota \sigma \tau \varepsilon i ́$.

H $\delta \iota \alpha ́ \rho \theta \rho \omega \sigma \eta ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \chi \omega \rho i ́ \zeta \varepsilon \tau \alpha ı ~ \sigma \varepsilon ~ \varepsilon ́ \xi ı ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı \alpha . ~ \Sigma \tau о ~ \pi \rho ต ́ \tau о ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı о ~ \gamma i ́ v \varepsilon \tau \alpha ı ~$

 олоío $\pi \rho о \sigma \varepsilon ́ \varphi \varepsilon \rho \varepsilon \alpha v \tau o ́ ~ \tau о ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ o . ~ T \varepsilon ́ \lambda о \varsigma ~ \gamma i ́ v \varepsilon \tau \alpha ı ~ \alpha v \alpha \varphi o \rho \alpha ́ ~ \sigma \tau о ~ \tau \varepsilon \rho \mu \alpha \tau ı к o ́ ~ C y g w i n ~ \tau o ~ о \pi о i ́ o ~$

B $\alpha \sigma$ ккоí ópot عvб $\omega \mu \alpha \tau \omega \mu \varepsilon ́ v \omega v ~ \sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v$

1.1. Eı $\sigma \alpha \gamma \omega \gamma \eta$

1.2. Tí ε ív $\alpha \iota \tau \alpha \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \alpha \sigma v \sigma \tau \eta \prime \mu \alpha \tau \alpha$

 $\sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v, \pi \varepsilon \rho i \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \varsigma ~ v \lambda ı \kappa o ́ ~ \eta ́ ~ \alpha к o ́ \mu \alpha ~ к \alpha ı ~ \mu \eta \chi \alpha v ı \alpha \alpha ́ ~ \mu \varepsilon ́ \rho \eta . ~ \Sigma \varepsilon ~ \alpha v \tau i \theta \varepsilon \sigma \eta ~ \varepsilon ́ v \alpha ~$

 $\mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~ \sigma \tau \alpha \theta \varepsilon \rho \varepsilon ́ \varsigma ~ \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma, ~ v ß \rho \iota \delta ı \alpha \alpha ́ ~ о \chi \eta ́ \mu \alpha \tau \alpha ~ \eta ́ ~ \sigma \varepsilon ~ \varepsilon \lambda \varepsilon \gamma \kappa \tau \varepsilon ́ \varsigma ~ \varepsilon \rho \gamma о \sigma \tau \alpha \sigma i ́ \omega v . ~[1] ~$

1.2.1. Хрŋ́бŋ $\tau \omega \nu \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \omega \nu \sigma v \sigma \tau \eta \mu \alpha ́ \alpha \tau \omega \nu$

- Оィкıккє̧́ бטбквvȩ́

- Паıхviסо $\mu \chi \chi v \varepsilon$ ќs

1.2.2.0ı $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma \tau \omega v \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \omega v \sigma v \sigma \tau \eta \mu \alpha \dot{\tau} \tau \omega$

Oı $\varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o l ~ \varepsilon \pi \varepsilon \xi \varepsilon є \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma ~ \chi \omega \rho i ́ \zeta o v \tau \alpha ı ~ \sigma \varepsilon ~ \delta v o ~ к и ́ \rho ı \varepsilon \varsigma ~ к \alpha \tau \eta \gamma о \rho i ́ \varepsilon \varsigma . ~ Н ~ \pi \rho ต ́ \tau \eta ~$

 $\varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \alpha$ бטбтŋ́ $\mu \alpha \tau \alpha$, ε íval $\alpha v \alpha ́ \lambda о \gamma \eta ~ \mu \varepsilon$ то $\lambda о \gamma \iota \sigma \mu \kappa o ́ ~ \pi о v ~ \chi \rho \eta \sigma \mu о \pi о є є i ́ \tau \alpha ı ~ \gamma ı \alpha$

1.2.3. Пגŋ́ $\rho \varepsilon \varsigma ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o ~ \sigma v ́ \sigma \tau \eta \mu \alpha$

T $\alpha \pi \lambda \eta ́ \rho \eta ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \alpha ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \varepsilon i ́ v \alpha l ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \tau \alpha ~ о \pi о i ́ \alpha ~ \varepsilon ́ \chi о v v ~ \delta 1 \alpha \mu о \rho \varphi \omega \theta \varepsilon i ́ ~$
 (SOC) к $\alpha \iota ~ \alpha \pi о \tau \varepsilon \lambda о и ́ v \tau \alpha ı ~ \alpha \pi o ́ ~ \pi о \lambda \lambda \alpha \pi \lambda о v ́ \varsigma ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma, ~ \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha \sigma \varepsilon \varepsilon ́ \varsigma, ~ c a c h e s ~ \kappa \alpha ı ~$
 η ŋ́ $\mu \varepsilon \tau \eta \nu \chi \rho \eta ́ \sigma \eta$ FPGAs. [1] (1)

1.3. O $0 \stackrel{\sigma}{ } \mu$ ós $\tau \omega v \sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v \pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa o v ́ \chi \rho o ́ v o v$

 $\delta \varepsilon v \tau \varepsilon \rho о \lambda \varepsilon ́ \pi \tau \circ v$ (milliseconds) ŋ́ акó $\mu \alpha$ каı $\sigma \varepsilon \mu \kappa \rho о \delta \varepsilon v \tau \varepsilon \rho o ́ \lambda \varepsilon \pi \tau \alpha$ (microseconds). $\Sigma \varepsilon$

1.3.1.Kрıтท́pı $\alpha \gamma \iota \alpha$ ह́v $\alpha \sigma v ́ \sigma \tau \eta \mu \alpha \pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa o v ́ \chi \rho o ́ v o v$

 χ ро́vov катๆүорıтоюои́vтаı $\omega \varsigma ~ \varepsilon ร \xi ŋ \varsigma: ~$

- Hard real-Time system. $\Sigma \varepsilon \alpha v \tau \eta ์ v ~ \tau \eta \nu ~ к \alpha \tau \eta \gamma о р i ́ \alpha ~ \alpha v ~ \varepsilon ́ v \alpha ~ \sigma ט ́ \sigma \tau \eta \mu \alpha ~ \pi \alpha \rho \alpha \beta \varepsilon i ́ ~$
 $\sigma v ́ \sigma \tau \eta \mu \alpha$ غ́ $\chi \varepsilon \iota ~ \alpha \pi о \tau ט ́ \chi \varepsilon เ$.
- Soft real-Time system. $\Sigma \varepsilon \alpha v \tau \eta \dot{\tau} \tau \eta \nu$ катпүорí $\alpha \nu \eta ́ \kappa о v \nu \tau \alpha \sigma v \sigma \tau \eta \mu \alpha \tau \alpha \sigma \tau \alpha$

 $\chi \alpha \mu \eta \lambda \eta ́, ~ к \alpha \theta \omega ́ \varsigma ~ \eta ~ \chi \rho \eta \sigma ц о ́ \tau \eta \tau \alpha ~ \tau \omega \nu ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha ́ \tau \omega \nu ~ \pi о v ~ \varepsilon \pi ı \sigma \tau \rho \varepsilon ́ \varphi \varepsilon є ~ \tau о ~$

 real-Time $\sigma v ́ \sigma \tau \eta \mu \alpha \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \theta \varepsilon \omega \rho \eta \theta \varepsilon i ́ ~ \eta ~ \zeta \omega v \tau \alpha v \eta ́ ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta ~ \varepsilon v o ́ s ~ \beta i ́ v \tau \varepsilon o . ~ M \pi o \rho \varepsilon i ́ ~ v \alpha ~$

 $\pi \varepsilon \rho ı \rho ı \sigma \mu о v ́ \varsigma .[1][2]$

Eıкóva 1-1. Пара́ $\delta \varepsilon \gamma \gamma \mu \alpha \chi \rho \eta ́ \sigma \eta \varsigma \tau \omega v$ Hard real-Time $\sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega \nu \kappa \alpha \iota \tau \omega \nu$ Soft real-Time $\sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v$ [1]

1.4. Tí عív $\alpha \iota \mu \iota \alpha$ FPGA

Mı FPGA ŋ́ $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau ı \zeta ̆ ́ \mu \varepsilon v \eta ~ \sigma \tau о ~ \pi \varepsilon \delta i ́ o ~ \sigma v \sigma \tau о \chi i ́ \alpha ~ \pi \nu \lambda ळ ́ v ~ \varepsilon i ́ v \alpha ı ~ \varepsilon ́ v \alpha ~$

 FPGA $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha \iota ~ \alpha \pi o ́ ~ \lambda o \gamma ı \kappa \varepsilon ́ \varsigma ~ \pi \rho \alpha ́ \xi \varepsilon ı \varsigma ~(o ́ \pi \omega \varsigma ~ A N D, ~ O R ~ \kappa \tau \lambda),. ~ \alpha \pi o ́ ~ b l o c k s ~ \varepsilon ו \sigma o ́ \delta o v ~ \varepsilon \xi o ́ \delta o v ~$

 (Programmable Logic Device) каı $\tau \alpha$ ASIC. 'O $\mu \omega \varsigma \tau \alpha$ ı $\delta \iota \alpha i ́ \tau \rho \alpha \alpha \chi \alpha \alpha \kappa \tau \eta \rho ı \tau \iota \kappa \alpha ́ ~ \tau \eta \varsigma ~ F P G A ~$ عívaı $\tau \alpha \varepsilon \xi \xi^{\prime} \varsigma$:

- H FPGA $\chi \alpha ́ v \varepsilon \imath ~ \tau o v ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau ı \sigma \mu o ́ ~ \tau \eta \varsigma ~ \kappa \alpha ́ \theta \varepsilon ~ \varphi о \rho \alpha ́ ~ \pi о v ~ \delta ı \alpha к о ́ \pi \tau \varepsilon \tau \alpha ı ~ \eta ~ \tau \alpha ́ \sigma \eta ~$
 $\mu \varepsilon \mu о ́ v \mu \eta$ боүкра́тпбך $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$ (non-volatile memory) $\alpha \pi$ ó $\tau \alpha$ олоí $\alpha \alpha$

- О $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu o ́ \varsigma ~ \tau \eta \varsigma ~ F P G A ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \alpha \lambda \lambda \alpha ́ \zeta \varepsilon ı ~ к \alpha ́ \theta \varepsilon ~ \varphi о \rho \alpha ́ ~ \pi о v ~$
 $\pi \circ v$ то $\varepsilon \lambda \varepsilon ́ \gamma \chi \varepsilon$.

 [3][4]

1.5. Tí ε ívoı $\tau \alpha$ ASIC

 $\alpha \rho ı \theta \mu o ́ ~ \tau \omega v ~ \tau \rho \alpha v \zeta ̌ i ́ \sigma \tau о \rho ~ \pi о v ~ \pi \varepsilon \rho ı \varepsilon i ́ \chi \alpha v . ~ O ~ o ́ \rho o s ~ \tau ́ \rho \rho \alpha, ~ \sigma v v \eta ́ \theta \omega \varsigma, ~ \sigma \eta \mu \alpha i ́ v \varepsilon ı ~ \tau \eta \nu ~ \alpha v \alpha \lambda \nu \tau \iota \kappa \eta ́ ~$

$\kappa \alpha \tau \alpha \sigma \kappa \varepsilon \cup \eta ์ ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \omega v ~ к о к \lambda \omega \mu \alpha ́ \tau \omega v ~ \gamma 1 \alpha ~ \varepsilon v \rho v ́ ~ \varphi \alpha ́ \sigma \mu \alpha ~ \varepsilon \varphi \alpha \rho \mu о \gamma \omega ́ v . ~ Х \rho \eta \sigma \mu о \pi о เ о v ́ \mu \varepsilon ~ \tau о v ~$

 о $\eta \mu \alpha ́ \tau \omega v$.

 $\mu \alpha \varsigma ~ \varepsilon \pi ı \lambda o \gamma \eta ́ ~ \varepsilon i ́ v \alpha ı ~ \varepsilon ́ v \alpha ~ A S I C ~ \eta ́ ~ \varepsilon ́ v \alpha ~ A S S P, ~ к \alpha ı ~ \tau o ~ v \psi \eta \lambda o ́ t \varepsilon \rho o ~ к o ́ \sigma \tau o ̧ ~ N R E ~ \varepsilon i ́ v a ı ~ \varepsilon ́ v \alpha ~$

 $\varepsilon \vee o ́ \varsigma ~ \pi \lambda \eta ́ \rho \omega \varsigma ~ \pi \rho о \sigma \alpha \rho \mu о \sigma \mu \varepsilon ́ v o v ~ A S I C . ~[5] ~$

M $\varepsilon \tau \eta \vee \pi \alpha ́ \rho o \delta o ~ \tau о v \chi \rho o ́ v o v ~ \tau о ~ \mu \varepsilon ́ \gamma \varepsilon \theta o \varsigma ~ \tau \omega \nu ~ A S I C ~ \varepsilon ́ \chi \varepsilon ı ~ \mu \varepsilon \iota \omega \theta \varepsilon i ́ ~ \sigma \eta \mu \alpha \nu \tau ı \kappa \alpha ́, ~ \tau \alpha ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~$

 $\varepsilon \mu \pi \varepsilon \rho เ \varepsilon ́ \chi \circ v \nu \mu \kappa \rho о \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma$, block $\mu \nu \eta ́ \mu \eta \varsigma$ ó $\boldsymbol{\pi} \omega \varsigma$ RAM, ROM, EEPROM каı Flash. Ot

$\Sigma \varepsilon \alpha v \tau i \theta \varepsilon \sigma \eta \mu \varepsilon \tau \imath \varsigma$ FPGA $\tau \alpha$ ASIC $\delta \varepsilon v$ عívaı $\varepsilon \pi \alpha \alpha v \alpha \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \zeta$ о́ $\mu \varepsilon v \alpha$. Гı’ $\alpha v \tau o ́ v ~ \tau о$

1.6. Av $\alpha \varphi$ оро́ $\sigma \tau \iota \varsigma ~ \alpha \rho \chi ı \tau \varepsilon к \tau о v ı к \varepsilon ́ \varsigma ~ \mu \nu \eta ́ \mu \eta \varsigma ~ V o n ~ N e u m a n n ~ к \alpha \iota ~$ Harvard

 $\eta \mu \varepsilon \tau \alpha \varphi о р \alpha ́ ~ \tau \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ к \alpha ı ~ \tau \omega v ~ \varepsilon \nu \tau о \lambda \omega ́ v ~ \sigma \tau \eta \nu ~ \alpha \rho \chi ı \tau \varepsilon к \tau о \nu ı к \eta ́ ~ V o n ~ N e u m a n n ~ \pi \rho \varepsilon ́ л \varepsilon ı ~ v \alpha ~$

Архıтєктоvıкฑ́ ข入ıкои́

2.1. Eเ $\sigma \alpha \gamma \omega \gamma \eta$

 $\chi \rho \eta \sigma \mu о \pi о เ \varepsilon i ́ \tau \alpha \iota$ бто бט́бтๆца.

 тоv 1980, $\varepsilon v \omega ́ ~ \mu \varepsilon ~ \tau \alpha ~ \sigma \eta \mu \varepsilon \rho เ v \alpha ́ ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \alpha ~ к и к \lambda \omega ́ \mu \alpha \tau \alpha ~ v \alpha ~ \varepsilon ́ \chi о v v ~ \chi \alpha \rho \alpha к \tau \eta \rho ı \sigma \tau ı к \alpha ́ ~ \mu \varepsilon \gamma \varepsilon ́ \theta \eta ~$

 $\pi \varepsilon ́ \tau \cup \chi \varepsilon ~ \varepsilon \cup \rho ט ́ \tau \alpha \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \eta ́ \tau \alpha \nu ~ \eta ~ о ю к о \gamma \varepsilon ́ v \varepsilon ı \alpha ~ " t r a n s i s t o r-t r a n s i s t o r ~ l o g i c " ~(T T L) . ~ O ı ~ \sigma ט \sigma \kappa \varepsilon v \varepsilon ́ \varsigma ~$

 semiconductor" - CMOS) $\pi о v ~ \beta \alpha \sigma$ 'íov $\alpha \alpha \iota ~ \sigma \varepsilon ~ \tau \rho \alpha v \zeta i ́ \sigma \tau о \rho ~ \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta \varsigma ~ \pi \varepsilon \delta i ́ o v ~(f i e l d ~ e f f e c t ~$

 т人́бๆ $\sigma \tau \iota \varsigma$ عוбóסovs. [5]

Eıкóva 2-1. Kúк $\lambda \omega \mu \alpha$ CMOS $\gamma \downarrow \alpha$ ह́v $\alpha v \alpha \nu \tau \iota \sigma \tau \rho о \varphi \varepsilon ́ \alpha ~[5] ~$

2.3. Te χ voגo γ í α CMOS

 $\kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \eta ์ ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \omega v ~ к и к \lambda \omega \mu \alpha ́ \tau \omega v . ~ H ~ \tau \varepsilon \chi \nu о \lambda о \gamma i ́ \alpha ~ C M O S ~ \chi \rho \eta \sigma \mu о л о є є i ́ \tau \alpha l ~ \sigma \varepsilon ~$

 то 1967.

[^0]

 $\mu \varepsilon ́ \sigma \alpha$ oॄ ह́va chip кal $\alpha v \tau o ́ s ~ \eta ́ \tau \alpha v ~ o ~ \beta \alpha \sigma ı \kappa o ́ s ~ \lambda o ́ \gamma o s ~ \pi o v ~ \eta ~ \tau \varepsilon \chi v o \lambda o \gamma i ́ \alpha ~ C M O S ~ \varepsilon ́ \gamma ı v e ~ \eta ~$ $\pi \rho о \tau \not \mu \omega ́ \mu \varepsilon \vee \eta ~ \tau \varepsilon \chi \vee \circ \lambda 0 \gamma i ́ \alpha ~ \gamma 1 \alpha ~ \chi \rho \eta ́ \sigma \eta ~ \sigma \varepsilon$ chip VLSI. [11]

2.3.1. X $\alpha \rho \alpha \kappa \tau \eta \rho เ \sigma \tau \iota \kappa \alpha \dot{\alpha} \tau \varepsilon \chi v o \lambda o \gamma i ́ \alpha \varsigma$ CMOS

 $\varepsilon \pi \alpha \varphi \eta ́ \varsigma ~ J o s e p h s o n . ~ П ı о ~ \alpha v \alpha \lambda v \tau \iota \kappa \alpha ́, ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \delta ı \alpha \theta \varepsilon ́ \sigma \iota \mu \varepsilon \varsigma ~ \tau \varepsilon \chi v o \lambda о \gamma i ́ \varepsilon \varsigma ~ \eta ~ \tau \varepsilon \chi v o \lambda о \gamma i ́ \alpha ~ \tau о v$

 CMOS $\pi \alpha \rho о v \sigma 1 \alpha ́ \zeta \varepsilon ı ~ \tau \eta \nu ~ v \psi \eta \lambda о ́ \tau \varepsilon \rho \eta ~ \pi \nu \kappa v o ́ \tau \eta \tau \alpha ~ о \lambda о к \lambda \eta ์ \rho \omega \sigma \eta \varsigma ~ \kappa \alpha \theta \omega ́ \varsigma ~ \kappa \alpha ı ~ \tau \eta \nu ~ \chi \alpha \mu \eta \lambda о ́ \tau \varepsilon \rho \eta$

[^1]
 $V_{S S}$.

- Xpóvovs $\mu \varepsilon \tau \alpha ́ \beta \alpha \sigma \eta \varsigma ~-~ O \imath ~ \chi \rho o ́ v o ı ~ \alpha v o ́ \delta o v ~ к \alpha ı ~ к \alpha \theta o ́ \delta o v ~ \varepsilon i ́ v \alpha ı ~ \tau \eta \varsigma ~ i ́ \delta ı \alpha \varsigma ~ \tau \alpha ́ \xi \varepsilon є \omega \varsigma . ~$
 ィбхи́os.

 $\mu \alpha v \delta \alpha \lambda \omega \tau \varepsilon ́ \varsigma \kappa \alpha \iota ~ \kappa \alpha \tau \alpha \chi \omega \rho \eta \tau \varepsilon ́ \varsigma$.

 $\tau \omega v \lambda$ дүүкळ́v $\mu \varepsilon \tau \alpha \beta \alpha ́ \sigma \varepsilon \omega v$.

 $1.5 \mu \varepsilon ́ \chi \rho ı 15$ volts.

Oı $\pi \varepsilon \rho ı \varphi \varepsilon \rho \varepsilon ı \alpha \kappa \varepsilon ́ \varsigma ~ \sigma v \sigma \kappa \varepsilon v \varepsilon ́ \varsigma ~ \sigma \tau \alpha ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \alpha ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \sigma v v \eta ́ \theta \omega \varsigma ~ \delta ı \alpha \sigma u v \delta \varepsilon ́ o v \tau \alpha \nu$

 ט́ $\pi \alpha \rho \xi \eta ~ \mu \varepsilon \gamma \alpha ́ \lambda \sigma v ~ \pi о \sigma о \sigma \tau о ט ́ ~ к \alpha \lambda \omega \delta \iota \omega ́ \sigma \varepsilon \omega v ~ \pi \alpha ́ v \omega ~ \sigma \varepsilon ~ \delta \iota \alpha ́ \tau \rho \eta \tau \varepsilon \varsigma ~ \pi \lambda \alpha \kappa \varepsilon ́ \tau \varepsilon \varsigma ~ \mu \varepsilon ~ \sigma к о \pi o ́ ~ \tau \eta ~$ $\delta \rho о \mu о \lambda o ́ \gamma \eta \sigma \eta \quad \tau \omega \nu \quad \delta \varepsilon \delta о \mu \varepsilon ́ v \omega \nu \quad \kappa \alpha \imath \quad \tau \omega \nu \quad \delta \varepsilon \varepsilon v \theta \dot{v} v \sigma \varepsilon \omega v$.

 $\alpha v \xi ̆ \eta \mu \varepsilon ́ v o ~ \lambda o ́ \gamma \omega ~ \tau \omega v ~ \varepsilon \pi \imath \pi \lambda \varepsilon ́ \omega v ~ \kappa \alpha \lambda \omega \delta i ́ \omega v ~ \kappa \alpha ı ~ \sigma v v \delta \varepsilon ́ \sigma \mu \omega v ~ \pi о v ~ v \pi ท ́ \rho \chi \alpha v ~ \sigma \tau о ~ \kappa v ́ \kappa \lambda \omega \mu \alpha$.
 Phillips, о олоі́о̧ $\beta \alpha \sigma i \zeta \varepsilon \tau \alpha ı ~ \sigma \varepsilon ~ \delta ı \alpha \sigma v ́ v \delta \varepsilon \sigma \eta ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \omega v ~ к и к \lambda \omega \mu \alpha ́ \tau \omega v ~ \chi \rho \eta \sigma \mu о \pi о \iota ө ́ v \tau \alpha \varsigma ~$

 $\varepsilon \varphi \alpha \rho \mu о \sigma \tau \varepsilon i ́ ~ \kappa \alpha l ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda \alpha ~ \pi \varepsilon \delta i ́ \alpha ~ \varepsilon к \tau o ́ g ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı к ́ ~ \delta ı \alpha \sigma ט ́ v \delta \varepsilon \sigma \eta ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \omega v$

 $\omega \varsigma ~ \sigma \varepsilon \imath \rho \iota \alpha \kappa o ́ ~ \rho о \lambda o ́ \imath ~(S C L) . ~ \Sigma \tau \eta \nu ~ E i к o ́ v \alpha ~ 2-2 ~ \pi \alpha \rho о v \sigma i \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \varepsilon ́ v \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \tau о v ~$ ठıú̀ov $I^{2} C$.

 દ́v $\delta \varepsilon ı \xi \eta ~ r e a d / w r i t e . ~$
3. H $\sigma v \sigma \kappa \varepsilon \cup \eta ́ ~ s l a v e ~ \mu \varepsilon ~ \tau \eta \nu ~ \tau \alpha v \tau о \pi о т \mu \varepsilon ́ v \eta ~ \delta ı \varepsilon v ́ \theta v v \sigma \eta ~ \alpha \pi \alpha \nu \tau \alpha ́ \varepsilon 1 ~ \mu \varepsilon ~ \varepsilon ́ v \alpha ~ \sigma \eta ́ \mu \alpha$ $\varepsilon \pi \imath \beta \varepsilon \beta$ í $\omega \sigma \eta$ я.
4. H $\varepsilon \pi ı \kappa o \imath v ต v i ́ \alpha ~ \sigma v v \varepsilon \chi i \zeta \varepsilon \tau \alpha ı ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma \tau \eta ~ \sigma ט \sigma \kappa \varepsilon v \eta ́ ~ m a s t e r ~ \kappa \alpha ı ~ \sigma \tau \eta ~ \sigma v \sigma \kappa \varepsilon v \eta ́ ~ s l a v e ~$ $\mu \varepsilon ́ \sigma \omega ~ \tau о v ~ к а \lambda \omega \delta i ́ o v ~ \sigma \varepsilon ı \rho ı \alpha к и ́ s ~ \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ ц . ~ K \alpha l ~ o l ~ \delta v o ~ \sigma v \sigma к \varepsilon v \varepsilon ́ \varsigma ~ \mu \pi о \rho о и ́ v ~ v \alpha ~$
 read η write. $\mathrm{O} \alpha \pi о \sigma \tau о \lambda \varepsilon ́ \alpha \varsigma ~ \sigma \tau \varepsilon ́ \lambda \nu \varepsilon ı ~ 8 ~ b i t ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega \nu ~ \sigma \tau о \nu ~ \pi \alpha \rho \alpha \lambda \eta ́ \pi \tau \tau \eta ~ \kappa \alpha l ~ o ~$ $\pi \alpha \rho \alpha \lambda \eta ́ \pi \tau \eta \varsigma \alpha \pi \alpha v \tau \alpha ́ \varepsilon 1 \mu \varepsilon 1$ bit $\varepsilon \pi \iota \beta \varepsilon \beta \alpha i ́ \omega \sigma \eta \varsigma$.

H $\varepsilon \pi \iota \kappa o \imath \omega \omega v i ́ \alpha ~ \tau \eta \varsigma ~ \kappa \alpha ́ \mu \varepsilon \rho \alpha \varsigma ~ \tau о v ~ \sigma ט \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \mu \varepsilon ~ \tau \eta \nu ~ F P G A ~ \gamma i ́ v \varepsilon \tau \alpha ı ~ \mu \varepsilon ́ \sigma \omega ~ \tau о v ~ \delta ı \alpha v ́ \lambda о v ~$

- Н $\lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha ~ \chi \alpha \mu \eta \lambda \eta ́ \varsigma ~ \tau \alpha \chi ט ́ \tau \eta \tau \alpha \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ \pi \alpha \rho \alpha \lambda \eta \varphi \theta \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau \alpha ~ \chi \alpha \rho \alpha к \tau \eta \rho ı \sigma \tau ו \kappa \alpha ́ ~ \tau о v ~$ Sav́iov $I^{2} C$.
- H $\lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha ~ v \psi \eta \lambda \eta ́ \varsigma ~ \tau \alpha \chi v ́ \tau \eta \tau \alpha \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ \pi \rho о \sigma \tau \varepsilon \theta \varepsilon i ́ ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \pi о \nu \tau \alpha \varsigma ~ \tau \varepsilon \tau \rho \alpha \pi \lambda \alpha ́ \sigma ı \alpha ~ \alpha v ́ \xi ŋ \eta \sigma \eta$

 $\varepsilon \pi \imath \rho \rho \varepsilon \pi \varepsilon i ́ \varsigma ~ \sigma \varepsilon ~ \eta \lambda \varepsilon \kappa \tau \rho о \mu \alpha \gamma \nu \eta \tau \kappa \kappa \varepsilon ́ \varsigma \pi \alpha \rho \varepsilon \mu \beta \circ \lambda \varepsilon ́ \varsigma$. (6)

 $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \alpha \alpha \kappa \alpha$ ó $\chi 1$ бєıрıкка́ $\mu \varepsilon \beta \alpha ́ \sigma \eta ~ \tau \alpha ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho เ \sigma \tau ı \kappa \alpha ́ ~ \tau \eta \varsigma ~ \kappa \alpha ́ \mu \varepsilon \rho \alpha \varsigma . ~$
 $\varepsilon \pi \iota \kappa о \imath \omega v i ́ \alpha ~ \alpha v \alpha \pi \alpha \rho ı \tau \tau \alpha ́ \tau \alpha ı ~ \sigma \tau \eta v ~ E ı к o ́ v \alpha ~ 2-3 . ~ ' O \pi \omega \varsigma ~ \mu \pi о \rho о v ́ \mu \varepsilon ~ v \alpha ~ \delta о v ́ \mu \varepsilon ~ \alpha \pi o ́ ~ \tau о ~ \sigma \chi \eta ́ \mu \alpha ~ \eta ~$

 $\sigma \eta ́ \mu \alpha$ тєр $\mu \alpha \tau \iota \sigma \mu \circ v ́$.

 үivel $\alpha \vee \alpha ́ \gamma \nu \omega \sigma \eta ~ \tau \eta \varsigma ~ \sigma \cup \gamma \kappa \varepsilon \kappa \rho ц \mu \varepsilon ́ v \eta \varsigma ~ \theta \varepsilon ́ \sigma \eta \varsigma ~ \mu \nu \eta ́ \mu \eta \varsigma ~ \tau \eta \varsigma ~ \kappa \alpha ́ \mu \varepsilon \rho \alpha \varsigma$.

Write mode

2.5. O九коүદ́veı α Spartan-3 tך¢ Xilinx

 бтๆท оוкоүร́veıа Spartan-3. (8)

Device	System Gates	Equivalent Logic Cells ${ }^{(1)}$	CLB Array (One CLB = Four Slices)			Distributed RAM Bits ($\mathrm{K}=1024$)	Block RAM Bits$(K=1024)$	Dedicated Multipliers	DCMs	Max. User I/O	Maximum Differential I/O Pairs
			Rows	Columns	Total CLBs						
XC3S50 ${ }^{(2)}$	50K	1,728	16	12	192	12K	72K	4	2	124	56
XC3S200 ${ }^{(2)}$	200K	4,320	24	20	480	30K	216K	12	4	173	76
XC3S400 ${ }^{(2)}$	400K	8,064	32	28	896	56K	288K	16	4	264	116
XC3S1000 ${ }^{(2)}$	1M	17,280	48	40	1,920	120K	432K	24	4	391	175
XC3S1500	1.5M	29,952	64	52	3,328	208K	576K	32	4	487	221
XC3S2000	2M	46,080	80	64	5,120	320K	720K	40	4	565	270
XC3S4000	4M	62,208	96	72	6,912	432K	1,728K	96	4	633	300
XC3S5000	5M	74,880	104	80	8,320	520K	1,872K	104	4	633	300

3.1. Eเб $\alpha \gamma \omega \gamma \eta \mathfrak{}$

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma$ (RISC кגı CISC), $\sigma \tau о \vartheta \varsigma \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma \tau \omega \nu \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \omega \nu \quad \sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v$.

 8.

3.2. Архıтєктоขıкŋ́ RISC к α CISC

To 1980, $\mu \boldsymbol{\alpha}$ о $\mu \alpha ́ \delta \alpha$ бто Berkeley, $\mu \varepsilon \varepsilon \pi \iota к \varepsilon \varphi \alpha \lambda \eta ́ s ~ \tau o v ̧ ̧ ~ D a v i d ~ P a t t e r s o n ~ к \alpha ı ~ C a r l o ~$

 San Francisco, $\sigma \tau$ Stanford, о John Hennessy $\sigma \chi \varepsilon \delta i ́ \alpha \sigma \varepsilon ~ \kappa \alpha l ~ к \alpha \tau \alpha \sigma \kappa \varepsilon v ́ \alpha \sigma \varepsilon \varepsilon ~ \varepsilon ́ v \alpha ~ \kappa \alpha ́ \pi \omega \varsigma ~$
 $\pi \rho о$ öv七 $\alpha, \tau \iota \varsigma \mu \eta \chi \alpha v \varepsilon ́ \varsigma ~ S P A R C ~ \kappa \alpha ı ~ M I P S, ~ \alpha v \tau i ́ \sigma \tau о \imath \chi \alpha . ~$

 óvoب人 ε غ́ ε عıv.

 $\mu \eta \chi \alpha v \varepsilon ́ \varsigma ~ R I S C$.
 RISC, oı $\mu \eta \chi \alpha v \varepsilon ́ \varsigma ~ R I S C ~(o ́ \pi \omega \varsigma ~ о ~ \varepsilon \pi \varepsilon \xi є \rho \gamma \alpha \sigma \tau \eta ́ \varsigma ~ A l p h a ~ \tau \eta \varsigma ~ D E C) ~ \theta \alpha ~ \sigma \alpha ́ \rho \omega v \alpha v ~ \tau ı \varsigma ~ \mu \eta \chi \alpha v \varepsilon ́ \varsigma ~$

[^2]

 v λ олоí $\emptyset \sigma \eta$ microcoding ${ }^{6}$.

 Harvard $\chi \rho \eta \sigma \mu о \pi о \iota \oplus ́ v \tau \alpha \varsigma ~ \delta ı \alpha \varphi о \rho \varepsilon \tau \iota к о ́ ~ \delta i ́ \alpha v \lambda о ~ \gamma ı \alpha ~ \tau \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ к \alpha ı ~ \delta ı \alpha \varphi о \rho \varepsilon \tau \iota к о ́ ~ \gamma ı \alpha ~ \tau ı \varsigma ~$

 $\mu ル \kappa о \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma ~ \sigma \chi \varepsilon \delta 1 \alpha ́ \zeta 0 v \tau \alpha ı ~ \varepsilon ı \delta ı \kappa \alpha ́ ~ \gamma ı \alpha ~ \varepsilon \nu \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \varepsilon \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma . ~ K \alpha ı ~ \sigma \tau ı \zeta ~ \delta v ́ o ~$
 $\sigma \varepsilon \mu \nu \alpha$ л $\lambda \alpha \kappa \varepsilon ́ \tau \alpha ~ \tau ข \pi \omega \mu \varepsilon ́ v о v ~ к и к \lambda \omega ́ \mu \alpha \tau о \varsigma ~(p r i n t e d ~ c i r c u i t ~ b o a r d ~-~ P C B) . ~ A v \tau i \theta \varepsilon \tau \alpha, ~ o 七 ~$

 π тоv $\lambda \varepsilon \iota \tau о \cup \rho \gamma о v ́ v ~ \sigma \varepsilon ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \pi о v ~ \varphi Ө \alpha ́ v o v v ~ \sigma \varepsilon ~ \mu \eta ́ \kappa о \varsigma ~ \mu \varepsilon ́ \chi \rho ı ~ \tau \alpha ~ 32 ~ b i t ~ \kappa \alpha ı ~ 64 ~ b i t . ~$

[^3]

 $\sigma v \sigma \kappa \varepsilon v \alpha \sigma i ́ \alpha ~ \mu \varepsilon ~ \tau \eta ~ C P U . ~ H ~ C P U ~ \sigma \tau \eta \nu ~ F P G A ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ v \lambda о \pi о ŋ ~ \theta \varepsilon i ́ ~ \omega \varsigma ~ \varepsilon ́ v \alpha ~ \mu \pi \lambda о \kappa ~$ $\pi \rho о \kappa \alpha \theta$ oрıб $\mu \varepsilon ́ v \eta \varsigma ~ \lambda \varepsilon \iota \tau о \nu \rho \gamma i ́ \alpha \varsigma ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta v ~ \pi \rho o \gamma \rho \alpha \mu \mu \alpha \tau \iota \zeta o ́ \mu \varepsilon v \eta ~ \delta о \mu \eta ́$. Oı FPGA Virtex-II Pro каı Virtex 4 ало́ $\tau \eta \nu$ Xilinx $\alpha \kappa о \lambda о v \theta$ ov́v $\alpha v \tau \eta ์ \nu ~ \tau \eta ~ \pi \rho о \sigma \varepsilon ́ \gamma \gamma \iota \sigma \eta, ~ к \alpha ı ~$

 $\sigma \chi \varepsilon \tau \iota \kappa \alpha ́ v \psi \eta \eta \lambda \eta \varsigma ~ \alpha \pi o ́ \delta o \sigma \eta \varsigma ~ \pi о v ~ \lambda \varepsilon ı \tau о \cup \rho \gamma o v ́ v ~ \sigma \varepsilon ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \alpha ~ \mu \varepsilon ~ \mu \eta ́ \kappa о \varsigma ~ \mu \varepsilon ́ \chi \rho ı ~ 32 ~ \eta ~ 64 ~ b i t . ~ Г i \alpha ~ \pi ı o ~$

 $\pi \nu \rho \eta ́ v \varepsilon \varsigma$ PowerPC $\alpha \pi$ ó $\tau \eta$ IBM, к $\alpha \iota$ ol $\pi \nu \rho \eta ́ v \varepsilon \varsigma$ MIPS $\alpha \pi$ ó $\tau \eta \nu$ MIPS Technologies. M ε
 $v \alpha \pi \rho о \sigma \alpha \rho \mu o ́ \sigma o v \mu \varepsilon \kappa \alpha ı \tau \eta v i ́ \delta ı \alpha ~ \tau \eta \nu$ CPU. H Tensilica Inc. عívaı ह́vas $\pi \rho о \mu \eta \theta \varepsilon v \tau \eta ́ s ~ \pi o v$

[^4]

 $\varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ \varsigma ~ \mu \varepsilon ~ \pi \alpha \rho о ́ \mu о ь ~ т р о ́ \pi о . ~[5] ~$

3.4. Tí ε ívaı oı Soft-Core $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma$

 $\gamma \lambda \omega ́ \sigma \sigma \alpha \varsigma ~ \pi \varepsilon \rho \imath \gamma \rho \alpha \varphi \eta ́ \varsigma ~ v \lambda ı к о v ́ ~(H D L) . ~ М \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma ט v \tau \varepsilon \theta \varepsilon i ́ ~ \gamma ı \alpha ~ о \pi о ю о \delta \eta ́ \pi о \tau \varepsilon ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v о ~$

 $\pi \rho о \sigma \alpha \rho \mu о \sigma \tau \iota к о ́ \tau \eta \tau \alpha$ каı $\mu \pi о \rho \varepsilon i ́ v \alpha \pi \alpha \rho \alpha \mu \varepsilon \tau \rho о \pi о џ \theta \varepsilon i ́ \gamma ı \alpha \varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma ~ \varepsilon ı \delta ı к о v ́ ~ \sigma к о \pi о v ́ ~ \mu \varepsilon ~ \mu ı \alpha$

3.5. $0 \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \eta \upharpoonleft$ SPARC

 ovó $\mu \alpha \sigma \varepsilon$ Sun-1.

 $\kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha ́ \zeta \varepsilon \iota ~ \kappa \alpha ı ~ v \alpha ~ \pi о v \lambda \alpha ́ \varepsilon ı ~ \sigma \tau \alpha \theta \mu о v ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ S u n . ~ ' E \pi \varepsilon ı \tau \alpha, ~ o ~ K h o s l a ~ \pi \rho о \sigma \varepsilon ́ \lambda \alpha \beta \varepsilon ~ \tau o v ~ S c o t t ~$

 $\mu \varepsilon \tau$ т ARPANET, τ оv $\pi \rho$ ó $\delta \rho о \mu$ о $\tau о v$ Internet.

 $\varepsilon \pi \alpha v \alpha \sigma \tau \alpha \tau \iota \kappa o ́ ~ v \varepsilon ́ o ~ \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ ~(\tau о ~ R I S C ~ I I) ~ \pi о v ~ \pi \rho о \varepsilon \rho \chi о ́ \tau \alpha \nu ~ \alpha \pi o ́ ~ \tau о ~ П а v \varepsilon \pi ı \sigma \tau \eta ́ \mu ю ~ \tau \eta \varsigma ~$

 SPARC.

AvtíӨгта $\alpha \pi o ́ ~ \pi о \lambda \lambda \varepsilon ́ \varsigma ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~ \varepsilon \tau \alpha ı \rho \varepsilon i ́ \varepsilon \varsigma ~ v \pi о \lambda о \gamma ı \sigma \tau \omega ́ v, ~ \eta ~ S u n ~ \alpha \pi о \varphi \alpha ́ \sigma ı \sigma \varepsilon ~ v \alpha ~ \mu \eta \nu$
 $\delta ı \alpha \varphi о \rho \varepsilon \tau \iota \kappa \circ v ́ \varsigma ~ \kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha \sigma \tau \varepsilon ́ \varsigma ~ \eta \mu \mu \alpha \omega \gamma \dot{\omega} v \nu \alpha \pi \alpha \rho \alpha ́ \gamma о v v \mu \kappa \rho о \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma$ SPARC, $\mu \varepsilon \tau \eta v$

 то HyperSPARC，七o SuperSPARC，каı 七o TurboSPARC．Av каı ó̀oı av七oí o七

 $\pi \rho о \mu \eta \theta \varepsilon v \tau \varepsilon ́ \varsigma ~ \varepsilon \xi \alpha \rho \tau \eta \mu \dot{\alpha} \tau \omega v$ каı $\sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v, ~ \oplus ́ \sigma \tau \varepsilon ~ v \alpha ~ о ו к о \delta о \mu \eta ́ \sigma \varepsilon \imath ~ \mu 1 \alpha ~ \beta ı о \mu \eta \chi \alpha v i ́ \alpha ~$

 غ́v人 $\pi \rho \circ$ öóv π оv $\varepsilon \lambda \varepsilon ́ \gamma \gamma \chi \varepsilon \tau \alpha l ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha v ~ \alpha v \tau \alpha \gamma \omega v i \sigma \tau \eta ́, ~ \eta ~ S u n ~ \delta \eta \mu ı o v ́ \rho \gamma \eta \sigma \varepsilon ~ \mu 1 \alpha ~ \sigma ט ́ \mu \pi \rho \alpha \xi ̌ \eta ~$ $\varepsilon \tau \alpha \iota \rho \varepsilon \iota \omega ́ v, \tau \eta$ SPARC International，$\gamma \iota \alpha$ v $\delta \iota \alpha \chi \varepsilon \rho i \zeta \varepsilon \tau \alpha \downarrow ~ \tau \eta v \alpha v \alpha ́ \pi \tau v \xi ̆ \eta ~ \tau \omega v \mu \varepsilon \lambda \lambda о v \tau \iota \kappa \omega ́ v$

O $\pi \rho \omega ́ \tau о \varsigma$ SPARC $\mathfrak{\eta} \tau \alpha \nu \mu 1 \alpha \mu \eta \chi \alpha v \eta ́ \tau \omega v$ 32bit，$\pi \circ v$ סov́ $\lambda \varepsilon v \varepsilon \sigma \tau \alpha 36 \mathrm{MHz}$ ．H CPU，$\pi \circ v$

 $\tau \varepsilon \lambda \iota \kappa \alpha ́ \pi \varepsilon ́ \rho \alpha \sigma \varepsilon \sigma \tau \alpha$ chip $\tau \omega \nu 32$ bit $\mu \varepsilon$ тov 80386.

 （Tremblay каı O’Connor，1996）．Av к $\alpha \iota$ o UltraSPARC $\mathfrak{\eta} \tau \alpha \nu \mu \alpha \mu \eta \chi \alpha \nu \eta ́ \tau \tau \nu 64$ bit， $\mathfrak{\tau} \tau \alpha \nu$ $\varepsilon v \tau \varepsilon \lambda \omega ́ \varsigma ~ \sigma \cup \mu \beta \alpha \tau o ́ \varsigma ~ \sigma \varepsilon ~ \varepsilon \pi i ́ \pi \varepsilon \delta o ~ \delta v \alpha \delta ı \kappa о v ́ ~ \kappa ต ́ \delta ı \kappa \alpha ~ \mu \varepsilon ~ \tau о \cup \varsigma ~ v \pi \alpha ́ p \chi о v \tau \varepsilon \varsigma ~ S P A R C ~ \tau \omega v ~ 32 ~ b i t . ~[6] ~$

 арұıтєктогıки́ тои SPARC V8．

3.6. Х $\alpha \rho \alpha \kappa \tau \eta \rho เ \sigma \tau \iota \kappa \alpha ́ ~ \tau o v ~ L E O N ~ 2 ~$

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \eta \mathfrak{S P A R C}$ Version 8. Eívaı $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \eta ์ \varsigma 32$ bit каı عívaı $\sigma \chi \varepsilon \delta \alpha \sigma \sigma \mu \varepsilon ́ v o \varsigma ~ \alpha \pi o ́ ~ \tau \eta$

 Harvard.

- $\Delta 1 \alpha \theta \varepsilon ́ \tau \varepsilon ı \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha \sigma \tau \varepsilon ́ \varsigma ~ \kappa \alpha ı ~ \delta ı \alpha ı \rho \varepsilon ́ \tau \varepsilon \varsigma . ~$

 $\varepsilon \sigma \omega \tau \varepsilon \rho \iota \kappa \varepsilon ́ \varsigma ~ \eta ́ ~ \varepsilon \xi \omega \tau \varepsilon \rho \iota \kappa \varepsilon ́ \varsigma ~ \pi \eta \gamma \varepsilon ́ \varsigma . ~ К \alpha ́ \theta \varepsilon ~ \mu l \alpha ~ \alpha \pi o ́ ~ \tau \imath \zeta ~ \delta ı \alpha к о \pi \varepsilon ́ \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~$

- Mová $\delta \alpha$ $\alpha \pi \sigma \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega \sigma \eta S ~(D e b u g ~ s u p p o r t ~ u n i t-~ D S U) . ~ H ~ \mu o v \alpha ́ \delta \alpha ~$

 $\alpha \pi о \sigma \varphi \alpha \lambda \mu \alpha \tau \omega \tau \eta$. Н μ оvó $\delta \alpha \alpha \pi о \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega \sigma \eta \varsigma \delta \varepsilon v$ ह́ $\chi \varepsilon \iota ~ \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta ~ \sigma \tau \eta \nu \alpha \pi o ́ \delta o \sigma \eta$ тоv $\sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \kappa \alpha ı ~ \varepsilon i ́ v \alpha l ~ \chi \alpha \mu \eta \lambda \eta ́ s ~ \pi о \lambda v \pi \lambda о к o ́ \tau \eta \tau \alpha \varsigma . ~ H ~ \varepsilon \pi ı к о ı v ต v i ́ \alpha ~ \mu \varepsilon ~ \varepsilon ́ v \alpha v ~$

 baud-rate $\mu \pi о \rho \varepsilon i ́ ~ v \alpha \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \tau \varepsilon$ í $\xi \varepsilon \chi \omega \rho \iota \sigma \tau \alpha ́ ~ \kappa \alpha ı ~ \tau \alpha ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \alpha ~ \sigma \tau \varepsilon ́ \lambda \nu o v \tau \alpha ı ~ \sigma \varepsilon$
 $\tau \varepsilon \rho \mu \alpha \tau \iota \sigma \mu o ́ ~ \tau \eta \varsigma ~ \varepsilon \pi \imath \kappa о \imath v \omega v i ́ \alpha \varsigma$.
- Watch dog $\chi \rho о v о \mu \varepsilon \tau \rho \eta \tau \eta ́ s . ~ Х \rho \eta \sigma \mu о \pi о є \varepsilon ́ \tau \alpha ı ~ \varepsilon ́ v \alpha \varsigma ~ W a t c h ~ d o g ~ \chi \rho о v о \mu \varepsilon \tau \rho \eta \tau \eta ́ \varsigma ~ \tau \omega \nu ~$ 24 bit, о олоíos μ ó $\lambda<\varsigma ~ \varphi \tau \alpha ́ \sigma \varepsilon ı ~ \tau о ~ 0 ~ \pi \alpha \rho \alpha ́ \gamma \varepsilon \tau \alpha ı ~ \varepsilon ́ v \alpha ~ W D O G ~ \sigma \eta ́ \mu \alpha, ~ \tau о ~ о \pi о i ́ o ~$

- $\Delta 1 \alpha \theta \varepsilon ́ t \varepsilon 1 ~ \mu о v \alpha ́ \delta \alpha ~ \delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta ร ~ \mu \nu \eta ́ \mu \eta ร ~(M M U) . ~ H ~ \mu о v \alpha ́ \delta \alpha ~ \delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta s ~ \mu v \eta ́ \mu \eta s$

 (DRAM). H $\pi \varepsilon \rho เ о \chi \eta ́ \tau \eta \varsigma \mu \nu \eta \mu \eta \varsigma \mu \pi о \rho \varepsilon i ́ v \alpha \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \tau \varepsilon i ́ v \alpha \chi \rho \eta \sigma \not \mu о \pi о \iota \varepsilon i$ $\mu \varepsilon ́ \gamma \varepsilon \theta \mathrm{o}$ ऽ $\delta \varepsilon \delta$ о $\mu \varepsilon ́ v \omega v \tau \omega \nu 8,16$ ŋ́ 32 bit.

 $\mu \varepsilon$ غ́vav $\varepsilon \pi \downarrow \pi \lambda \varepsilon ́ o v ~ A H B ~ \delta i ́ \alpha v \lambda o . ~$

Тદ́л ข $о \pi о ŋ \theta \varepsilon i ́ ~ \varepsilon i ́ t \varepsilon ~ \sigma \varepsilon ~ \mu ı \alpha ~ F P G A \kappa, ~ \varepsilon i ́ t \varepsilon ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha ~ A S I C . ~ \Sigma \tau \eta \nu ~ E ı к o ́ v \alpha ~ 3-2 ~ \pi \alpha \rho о v \sigma ı \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \eta ~$ арұıєєктоขıкй тот LEON 2. (9)

Eıкóva 3-2. H арұıтєктоขıки́ тоv LEON 2 (9)

Е $\rho \gamma \alpha \lambda \varepsilon \varepsilon^{\prime} \alpha \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu$ ои́ тоv $\sigma v \sigma \tau \eta \prime \mu \alpha \tau 0 \varsigma$

4.1. Et $\sigma \alpha \gamma \omega \gamma \eta \prime$

4.2. $\Lambda \varepsilon เ \tau o u \rho \gamma i ́ \alpha ~ \varepsilon v o ́ \varsigma ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \eta ́$ (Compiler)

 $\varepsilon v o ́ \varsigma ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \eta$.

 то олоі́о $\alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon ı ~ \tau о ~ \lambda \alpha ́ \theta о \varsigma ~(\sigma \varepsilon ~ \pi \varepsilon \rho i ́ \pi \tau \tau \sigma \eta ~ \lambda \alpha ́ \theta о ৩ \varsigma), ~ к \alpha ı ~ \tau \eta \nu ~ \tau \varepsilon \lambda ı к \eta ́ ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~(b a c k ~ e n d), ~$

 бף $\mu \nu \tau \iota к о ́ ~ \tau \mu \eta ́ \mu \alpha ~ \tau о v ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau ı \sigma \tau \eta ́, ~ \pi о v ~ о v о \mu \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \pi i v \alpha к \alpha \varsigma ~ \sigma v \mu \beta o ́ \lambda \omega v . ~ O ~ \pi i ́ v \alpha к \alpha \varsigma ~$

 $\pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma . ~ \Lambda \varepsilon ו \tau о э \rho \gamma і ́ \varepsilon \varsigma ~ о ́ \pi \omega \varsigma ~ \eta ~ \varepsilon ו \sigma \alpha \gamma \omega \gamma \eta ́, ~ \eta ~ \delta ı \alpha \gamma \rho \alpha \varphi \eta ́ ~ к \alpha ı ~ \eta ~ \pi \rho о \sigma \pi \varepsilon ́ \lambda \alpha \sigma \eta ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma$. Oı $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \varepsilon ́ \varsigma \mu о v \eta ́ \varsigma ~ \sigma \alpha ́ \rho \omega \sigma \eta \varsigma$ (Single Pass Compilers) $\varepsilon \kappa \tau \varepsilon \lambda \frac{0}{v}$ ó ó $\varepsilon \varsigma \varsigma \tau \iota \varsigma$

 $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \omega ́ v$ аvтои́ $\tau 0 v$ тט́лоv. Ot $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \varepsilon ́ \varsigma ~ o ́ \mu \omega \varsigma ~ \mu \varepsilon ~ \delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~$
 олоíعऽ $\pi \varepsilon \rho i \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \sigma v v \eta ́ \theta \omega \varsigma ~ \tau \eta ~ \lambda \varepsilon \xi ı \kappa \eta ́ ~ к \alpha ı ~ \tau \eta ~ \sigma ט v \tau \alpha к \tau ı к \eta ́ ~ \alpha v \alpha ́ \lambda v \sigma \eta ~ \tau о v ~ \pi \eta \gamma \alpha i ́ o v ~$

Eıкóvа 4-1. Av $\alpha \pi \alpha \rho \alpha ́ \sigma \tau \alpha \sigma \eta \tau \eta \varsigma ~ \lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha s ~ \varepsilon v o ́ \varsigma ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \eta ́ ~[9] ~$

4.2.1. $\Delta \iota \alpha \mu \varepsilon \tau \alpha \gamma \lambda \omega \dot{\tau} \tau \iota \sigma \eta$ (Cross Compile)

 то $\varepsilon \nu \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \gamma ı \alpha ~ \tau о ~ о \pi о$ о $\pi \rho о о р і ́ \zeta \varepsilon \tau \alpha ı ~ \tau о ~ \pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha ~ \tau о ~ о \pi о і ́ о ~ \pi \alpha \rho \alpha ́ \gamma \varepsilon \tau \alpha 1 . ~ O 七 ~$ $\alpha \pi \alpha ı \eta ́ \sigma \varepsilon ı \varsigma ~ \pi о v ~ \varepsilon ́ \chi \varepsilon ા ~ \varepsilon ́ v \alpha ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \sigma v v \eta ́ \theta \omega \varsigma ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~ \sigma v \mu \beta \alpha \tau \varepsilon ́ \varsigma ~ \mu \varepsilon ~ \alpha v \tau \varepsilon ́ \varsigma ~ \tau о v ~$

 боүкєкрцќvo $\varepsilon \vee \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v o ~ \sigma v ́ \sigma \tau \eta \mu \alpha$.

 $\lambda o ́ \gamma o ~ \sigma ט v \eta ́ \theta \omega \varsigma ~ \tau \alpha ~ v \pi о \lambda о \gamma ı \sigma \tau \iota \kappa \alpha ́ ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \varepsilon i ́ v \alpha ı ~ \sigma \tau \alpha \theta \mu o i ́ ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ U N I X ~ o ́ \pi \omega \varsigma ~ \alpha v \tau o i ́ ~ \pi о v ~$

 compiling $\pi \rho \varepsilon ́ \pi \varepsilon є ~ v \alpha \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \pi \alpha \rho \varepsilon ́ \chi \varepsilon ı ~ \tau \eta v ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ \sigma \tau о \nu ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau \eta ́ v \alpha \mu \pi о \rho \varepsilon i ́ ~ v \alpha$

 Drives каı $\alpha \pi$ о́ $\mu 1 \alpha$ ко́ $\rho \tau \alpha \gamma \rho \alpha \varphi$ кю́v.

4.2.2. Пढ́s $\lambda \varepsilon ı \tau о \cup \rho \gamma \varepsilon i ́ ~ \eta ~ \delta ı \alpha \mu \varepsilon \tau \alpha \gamma \lambda \omega \dot{\tau} \tau \iota \sigma \eta$

 $\Sigma \varepsilon \alpha v \tau o ́ ~ \tau о ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı ~ \theta \alpha ~ \alpha v \alpha \lambda v ́ \sigma о \cup \mu \varepsilon ~ \tau \alpha ~ \varepsilon \pi \mu \mu \varepsilon ́ \rho о v ̧ ~ к о \mu \mu \alpha ́ \tau ı \alpha ~ \tau \alpha ~ о л о i ́ \alpha ~ \chi \rho \varepsilon ı \alpha ́ \zeta о v \tau \alpha ı ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~$

- Ava入vтŋ́s (Parser): O $\alpha v \alpha \lambda v \tau \eta ́ \varsigma ~ \mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi \varepsilon ı ~ \tau о \nu ~ \pi \eta \gamma \alpha i ́ o ~ \kappa ต ́ \delta ı к \alpha ~ \sigma \tau \eta ~ \gamma \lambda \omega ́ \sigma \sigma \alpha ~ a s s e m b l y . ~$

 $\pi \rho о о \rho і ́ \zeta \varepsilon \tau \alpha \iota ~ \tau о ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \mu \varepsilon ́ v o ~ \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$.
- $\Sigma \nu \mu \beta о \lambda о \mu \varepsilon \tau \alpha \varphi \rho \alpha \sigma \tau \eta ́ \varsigma ~(A s s e m b l e r): ~ О ~ \sigma \nu \mu \beta о \lambda о \mu \varepsilon \tau \alpha \varphi \rho \alpha \sigma \tau \eta ́ \varsigma ~ \mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ л \varepsilon є ~ \tau \eta v \gamma \lambda \omega ́ \sigma \sigma \alpha$

- $\Sigma v v \delta \varepsilon ́ \tau \eta \varsigma ~(L i n k e r): ~ O ~ \sigma u v \delta \varepsilon ́ \tau \eta \varsigma ~ \sigma u v \delta v \alpha ́ \zeta ́ \zeta ı ~ \xi \varepsilon \chi \omega \rho ı \sigma \tau \alpha ́ ~ \alpha \rho \chi \varepsilon i ́ \alpha ~ \pi о v ~ \varepsilon ́ \chi O v v ~ \pi \alpha \rho \alpha \chi \theta \varepsilon i ́ ~ \alpha \pi o ́ ~$

 $\sigma v ́ \sigma \tau \eta \mu \alpha \alpha \pi$ ó $\alpha v \tau$ ó $\sigma \tau$ олоío β рíбкદ $\tau \alpha$. (11)

4.3. $\mathrm{H} \gamma \lambda \omega \dot{\omega} \sigma \sigma \alpha \pi \rho o \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu o v ́ \mathrm{C}$

 то 1972 ót $\alpha v \alpha v \tau o ́ g ~ \kappa \alpha ı ~ o ~ K e n ~ T h o m p s o n ~ \alpha \sigma \chi о \lambda о v ́ v \tau \alpha v ~ \mu \varepsilon ~ \tau о v ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ ~ \tau о v ~ \lambda \varepsilon ı \tau о ง р \gamma ı к о v ́ ~$

 $\pi \alpha \rho \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \tau \eta \varsigma ~ C, ~ \varepsilon v \omega ́ ~ \eta ́ \tau \alpha \nu ~ \varepsilon \pi o ́ \mu \varepsilon v o ~ v \alpha ~ v \pi \alpha ́ \rho \chi о v \nu ~ \alpha \sigma \nu \mu \varphi \omega v i ́ \varepsilon \varsigma ~ \mu \varepsilon \tau \alpha \xi ์ ́ ~ \tau о v \varsigma . ~ ' E \tau \sigma ı, ~$

 $\chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \mu$ о́s $\delta \varepsilon v$ ह́ $\chi \varepsilon \imath ~ к \alpha \mu i ́ \alpha ~ \alpha \pi о \lambda v ́ \tau \omega \varsigma ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau ı \varsigma ~ \delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ \tau \eta \varsigma ~ \gamma \lambda \omega ́ \sigma \sigma \alpha \varsigma . ~ \Sigma i ́ \gamma о v \rho \alpha, ~ \eta ~$

 $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu \circ v$. Н С, о́ $\mu \omega \varsigma, \mu \pi о ́ \rho \varepsilon \sigma \varepsilon ~ v \alpha ~ \varphi \varepsilon ́ \rho \varepsilon є ~ \tau о v ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \tau \tau ŋ ~ \pi ı о ~ к о \nu \tau \alpha ́ ~ \sigma \tau о ~$

- Хорактпрıбтıка́ $\Sigma \chi \varepsilon \delta i ́ \alpha \sigma \eta \varsigma, Н ~ С ~ غ ́ \chi \varepsilon ı ~ \mu о \nu \tau \varepsilon ́ \rho v є \varsigma ~ \delta о \mu \varepsilon ́ \varsigma ~ \varepsilon \lambda \varepsilon ́ \gamma \chi о v ~ \gamma l \alpha ~ v \alpha ~$

 кต́дıка.

 бv́бтๆц α.

 $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \varepsilon ́ \varsigma \quad$ (compilers) $\kappa \alpha \downarrow \quad \varepsilon \rho \mu \eta \nu \varepsilon \cup \tau \varepsilon ́ \varsigma \quad$ (interpreters) $\gamma \lambda \omega \sigma \sigma \omega ́ v$
 $\sigma v v \eta ́ \theta \omega \varsigma ~ \tau \alpha ~ \sigma u v \alpha \nu \tau \alpha ́ \mu \varepsilon ~ \sigma \tau \eta ~ \sigma v \mu ß о \lambda ı \kappa \eta ́ \gamma \lambda \omega ́ \sigma \sigma \alpha$ (assembly language).
- Пробаvатодıбнós $\pi \rho о \varsigma ~ \tau о v ~ П \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau \eta ́, ~ Н ~ C ~ \varepsilon i ́ v \alpha ı ~ \pi \rho о б \alpha v \alpha \tau о \lambda ı \sigma \mu \varepsilon ́ v \eta ~$ $\pi \rho о \varsigma \tau \iota \varsigma \alpha v \alpha ́ \gamma \kappa \varepsilon \varsigma ~ \tau о v \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau \eta$, о олоíos каı غ́ $\chi \varepsilon \imath$ д́ $\mu \varepsilon \sigma \eta ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \tau о$

 $\mu \varepsilon \tau \eta \nu$ Pascal $\gamma 1 \alpha \pi \alpha \rho \alpha ́ \delta \varepsilon \gamma \gamma \mu \alpha$.

 غ́ $\chi \varepsilon ı ~ \eta ~ С, ~ \alpha \pi \alpha ı \tau \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau о v ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau ı \sigma \tau \eta ́ ~ \mu 1 \alpha ~ \alpha v \xi ̌ \eta \mu \varepsilon ́ v \eta ~ \varepsilon \pi \alpha \gamma \rho v ́ \pi v \eta \sigma \eta ~ \kappa \alpha ı ~ v \pi \varepsilon v \theta v v o ́ \tau \eta \tau \alpha . ~$

 $\sigma \varepsilon$ عvóтŋ $\tau \varepsilon \varsigma, \pi$,

 $\pi \rho o \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu o ́ s ~(b o t t o m-u p ~ p r o g r a m m i n g) . ~ ' E v \alpha ~ \pi \lambda \varepsilon о v \varepsilon ́ \kappa \tau \eta \mu \alpha ~ \tau о ט ~ \pi \alpha ́ v \omega-\pi \rho о \varsigma-\tau \alpha-\kappa \alpha ́ \tau \omega ~$

$\mathrm{O} \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \eta \dot{\varsigma}$ (compiler) $\tau \eta \varsigma \mathrm{C} \mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi \varepsilon \iota ~ \tau o v ~ \pi \eta \gamma \alpha i o ~ \kappa \omega ́ \delta ı \kappa \alpha ~(s o u r c e ~ p r o g r a m), ~$

 $\varepsilon \pi \varepsilon ́ \kappa \tau \alpha \sigma \eta . c . ~ О ~ \rho o ́ \lambda о \varsigma ~ \tau о v ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \sigma o ́ v \delta \varepsilon \sigma \eta \varsigma ~ \varepsilon i ́ v \alpha ı ~ v \alpha ~ \varepsilon v ต ́ \sigma \varepsilon ı ~ \tau о v ~ \tau \varepsilon \lambda ı к o ́ ~ к ต ́ \delta ı к \alpha, ~$

 т $£ \varepsilon ́ \xi о \nu \mu \varepsilon ~ \tau \alpha ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \mu \varepsilon \tau \alpha \gamma \lambda \omega ́ \tau \tau \iota \sigma \eta \varsigma ~ \kappa \alpha ı ~ \sigma ט ́ v \delta \varepsilon \sigma \eta \varsigma ~ \xi \varepsilon \chi \omega \rho ı \sigma \tau \alpha ́, ~ \varepsilon v \omega ́ ~ \sigma ' ~ \alpha ́ \lambda \lambda \lambda \alpha ~ о ~$

 $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu$ и́ C .

4.4. Av $\alpha \varphi \rho \rho \alpha ́ \quad \sigma \tau о ~ R T E M S ~$

 عíסos $\delta \iota \alpha \chi \varepsilon i ́ \rho \iota \sigma \eta \varsigma ~ \mu \nu \eta ́ \mu \eta \varsigma ~ \eta ́ ~ \delta ı \varepsilon \rho \gamma \alpha \sigma i \omega ́ v . ~ Y \lambda о \pi о є \varepsilon i ́ ~ \mu ı \alpha ~ \delta ı \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \sigma \varepsilon ~ \pi о \lambda v ́-v \eta \mu \alpha \tau \iota к o ́ ~$

 каı ठıа ноьрабно́ $\mu \nu \grave{\mu} \mu \eta$. (14)(15)

- ARM
- Atmel AVR
- Blackfin
- Freescale ColdFire

[^5]- Texas Instruments $\mathrm{C} 3 \mathrm{x} / \mathrm{C} 4 \mathrm{x}$ DSPs
- H8/300

- Lattice Mico32
- 68 k
- MIPS
- Nios II
- PowerPC
- Renesas M32C
- Renesas SuperH
- SPARC
- ERC32
- LEON
- SPARC_V9

4.5. $0 \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \eta \prime ¢ ~ G C C$

 Project.

 Objective-C. [12]

4.5.1.T $\alpha \beta \alpha \sigma \iota \kappa \alpha ́ \chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \tau \iota \kappa \alpha ́$ тov GCC

 $\mu \kappa \kappa о \varepsilon \lambda \varepsilon \gamma \kappa \tau \varepsilon ́ \varsigma$, DSPs каı $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma \tau \omega \nu 64$ bit.

O GCC $\delta \varepsilon v \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau i ́ \zeta \varepsilon ı ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \mu o ́ v o ~ \gamma 1 \alpha ~ \tau о ~ v \pi о \lambda о \gamma ı \tau \tau \kappa o ́ ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \sigma \tau о ~$

 $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau i ́ \sigma \varepsilon \iota \tau$ тоv $\varepsilon \alpha v \tau$ ó $\tau \circ v, ~ \oplus ́ \sigma \tau \varepsilon ~ v \alpha ~ \pi \rho о \sigma \alpha \rho \mu о \sigma \tau \varepsilon i ́ ~ \varepsilon v ́ к о \lambda \alpha ~ \sigma \varepsilon ~ v \varepsilon ́ \alpha ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha . ~$

O GCC દ́ $\chi \varepsilon ı ~ \tau \mu \eta ́ \mu \alpha \tau \alpha ~ \alpha \rho \chi ı к ŋ \varsigma ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~(f r o n t e n d s) ~ \sigma \varepsilon ~ \delta 1 \alpha ́ \varphi \rho \rho \varepsilon \varsigma \varsigma ~ \gamma \lambda \omega ́ \sigma \sigma \varepsilon \varsigma \varsigma ~ \gamma ı \alpha ~ \tau \eta \nu$ $\alpha v \alpha ́ \lambda \nu \sigma \eta ~ \delta ц \alpha \varphi о \rho \varepsilon \tau к \kappa \omega ́ v ~ \gamma \lambda \omega \sigma \sigma \omega ́ v . ~ П \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \sigma \varepsilon ~ к \alpha ́ \theta \varepsilon ~ \gamma \lambda \omega ́ \sigma \sigma \alpha ~ \mu \pi о \rho о и ́ v ~ v \alpha ~$
 غ́v $\alpha \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha \gamma \rho \alpha \mu \mu \varepsilon ́ v o ~ \sigma \tau \eta ~ \gamma \lambda \omega ́ \sigma \sigma \alpha ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu \circ v ́$ ADA $\mu \pi о \rho \varepsilon i ́ v \alpha \mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \tau \varepsilon i ́ \gamma 1 \alpha$
 $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \tau \tau \varepsilon i ́ \gamma 1 \alpha$ ह́v $\alpha v \nu \pi \varepsilon ́ \rho-v \pi о \lambda о \gamma \iota \tau \tau \eta$.

4.6. To тع $\rho \mu \alpha \tau \iota o ́$ Cygwin

 Парє́ $\chi \varepsilon \iota ~ \sigma \tau о \nu ~ \chi \rho \eta ́ \sigma \tau \eta ~ \tau \eta \nu ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ v \alpha ~ \delta \eta \mu ı о \rho \gamma \varepsilon i ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ к \alpha ́ v о \nu \tau \alpha \varsigma ~ \chi \rho \eta ́ \sigma \eta ~ \tau \omega v$

 UNIX bash shell, $\kappa \alpha \theta \dot{\varrho} \varsigma \kappa \alpha 1 \mu 1 \alpha \pi \lambda \eta \theta \dot{\rho} \rho \alpha \pi \rho о \gamma \rho \alpha \mu \mu \alpha ́ \tau \omega \nu \pi \sigma v ~ \sigma v v \alpha v \tau \alpha ́ \mu \varepsilon \sigma \varepsilon$ UNIX/Linux

5.1. Eı $\sigma \alpha \gamma \omega \gamma \eta$

 $\alpha v \alpha \varphi о \rho \alpha ́ ~ \sigma \tau о ~ \chi \rho \omega \mu \alpha \tau \iota к o ́ ~ \mu о \nu \tau \varepsilon ́ \lambda о ~ R G B ~(R e d ~-~ G r e e n ~-~ B l u e), ~ \kappa \alpha ı ~ \varepsilon ́ л \varepsilon ı \tau \alpha ~ \pi \omega \varsigma ~ \alpha v \tau o ́ ~ \tau о ~$
 $\pi о v \pi \rho о \sigma \varphi \varepsilon ́ \rho \varepsilon ı ~ \eta ~ \kappa \alpha ́ \mu \varepsilon \rho \alpha ~ \kappa \alpha ı ~ \pi \omega \varsigma ~ \beta о \eta \forall \alpha ́ \varepsilon ı ~ \sigma \tau \eta \nu ~ \kappa \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \alpha v \alpha ́ \lambda v \sigma \eta ~ \tau \eta \varsigma ~ \varepsilon ા \kappa o ́ v \alpha \varsigma . ~$

5.2. To $\chi \rho \omega \mu \alpha \tau \iota \kappa o ́ ~ \mu о v \tau \varepsilon ́ \lambda o ~ R G B ~$

To $\chi \rho \omega \mu \alpha \tau \iota \kappa o ́ ~ \mu о \nu \tau \varepsilon ̇ \lambda о$ RGB $\beta \alpha \sigma i \zeta \varepsilon \tau \alpha \downarrow ~ \sigma \tau \eta ~ \theta \varepsilon \omega \rho i ́ \alpha ~ Y o u n g-H e l m h o l t z ~ \gamma ı \alpha ~ \tau \eta v$

 tov James Clerk Maxwell.

Ало́ та $\pi \varepsilon \upharpoonleft \propto ́ ́ \mu \alpha \tau \alpha ~ \pi о v ~ v \lambda о \pi о і ́ \eta \sigma \varepsilon ~ о ~ N \varepsilon v ́ \tau \omega v \alpha \varsigma, ~ о \delta \eta \gamma \gamma ŋ ́ Ө \eta к \varepsilon ~ \sigma \tau \eta ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau о v ~$

 $\chi \rho \omega \mu \alpha ́ \tau \omega v$ (Red - Green - Blue, Kóккıvo - Про́бıvo - М $\pi \lambda \varepsilon$) $\theta \alpha \mu \pi о \rho о v ́ \sigma \varepsilon ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~$
 $\lambda \varepsilon v к о ́$.

 ó $\sigma 0 \gamma 1 \alpha \tau \eta \nu \alpha \nu \tau i ́ \lambda \eta \psi \eta \tau \omega v \chi \rho \omega \mu \alpha ́ \tau \omega v$ ($\kappa \omega v i ́ \alpha)$:

- S-кळvía: عívaı $\varepsilon v \alpha i ́ \sigma \theta \eta \tau \alpha ~ \sigma \varepsilon ~ \varphi \omega \tau o ́ v l \alpha ~ \mu ı к о и ́ ~ \mu \eta ́ к о v \varsigma ~ к ט ́ \mu \alpha \tau о \varsigma ~(~ \mu \pi \lambda \varepsilon ~ \varphi \omega \varsigma) ~ к \alpha ı ~$

 $\pi \alpha \rho о v \sigma 1 \alpha ́ \zeta o v v ~ \mu \varepsilon ́ \gamma ı \sigma \tau \eta ~ \varepsilon v \alpha ı \sigma \theta \eta \sigma i ́ \alpha ~ \sigma \varepsilon ~ \mu \eta ́ \kappa о \varsigma ~ \kappa v ́ \mu \alpha \tau о \varsigma ~ \pi \varepsilon \rho i ́ \pi о v ~ 560 n m . ~$
 $\mu \alpha ́ \tau \iota \mu \alpha \varsigma ~ \kappa \alpha ı ~ \varepsilon v \varepsilon \rho \gamma о \pi о เ ช ์ v \tau \alpha ı ~ \mu o ́ v o ~ \alpha v ~ \varphi \theta \alpha ́ v o v v ~ \sigma ' ~ \alpha v \tau o ́ ~ 500 ~ \varphi \omega \tau o ́ v ı \alpha ~ \tau о ~ \delta \varepsilon v \tau \varepsilon \rho o ́ \lambda \varepsilon \pi \tau о . ~ A \pi o ́ ~$ $\tau \eta v \alpha \dot{\alpha} \lambda \lambda \eta$, $\tau \alpha \kappa \omega v i ́ \alpha ~ \varepsilon v \varepsilon \rho \gamma о \pi о เ o v ́ v \tau \alpha \iota ~ \kappa \alpha ı ~ \mu \varepsilon ~ 10 ~ \varphi \omega \tau о ́ v ı \alpha ~ \alpha v \alpha ́ ~ \delta \varepsilon v \tau \varepsilon \rho о ́ \lambda \varepsilon \pi \tau \tau . ~$
'О $\lambda \alpha \tau \alpha \chi \rho \omega ́ \mu \alpha \tau \alpha \varphi \omega \tau$ о́s $\sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ CIE (Committé Internationale de l'Éclairage)

 $\pi \rho о \sigma \theta \varepsilon \tau \iota \kappa o ́: ~ M \varepsilon ~ \tau \eta \nu ~ \alpha \nu \alpha ́ \mu \varepsilon ı \xi ̌ \eta ~ \varphi \omega \tau \varepsilon เ \nu ต ́ \nu ~ \alpha \kappa \tau i ́ v \omega \nu ~ R, ~ G, ~ B ~ \pi \alpha \rho \alpha ́ \gamma о \nu \tau \alpha ı ~ \alpha ́ \lambda \lambda \alpha ~ \chi \rho \dot{\mu \alpha \tau \alpha . ~}$

 عívaı о $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega$.

$$
1.0(C)=r(R)+g(G)+b(B)
$$

$$
1=r+g+b
$$

$\varepsilon \pi о \mu \varepsilon ́ v \omega \varsigma ~ \gamma 1 \alpha$ va $\pi \rho о \sigma \delta \imath \rho ı \sigma \tau \varepsilon i ́ ~ \varepsilon ́ v \alpha ~ \chi \rho \omega ́ \mu \alpha ~ \alpha \rho \kappa \varepsilon i ́ ~ v \alpha ~ \gamma v \omega \rho i ́ \zeta о ч \mu \varepsilon ~ \delta v ́ o ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \tau \rho \varepsilon ı \varsigma ~$ $\sigma \cup v \tau \varepsilon \tau \alpha \gamma \mu \varepsilon ́ v \varepsilon \varsigma ~ \tau о v:$

$$
1-(r+g)=b
$$

 2.

 (19)

5.3. To $\mu \circ \nu \tau \varepsilon ́ \lambda o ~ R G B ~ \sigma \tau \eta \nu ~ \kappa \alpha ́ \mu \varepsilon \rho \alpha$

 $\alpha v \tau$ ó $\sigma \cup \mu \beta \alpha i ́ v \varepsilon ı ~ \gamma ı \alpha \tau i ́ ~ \tau o ~ \alpha v \theta \rho ต ́ \pi ı v o ~ \mu \alpha ́ \tau ı ~ \varepsilon ́ \chi \varepsilon ı ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \varepsilon v \alpha ı \sigma \theta \eta \sigma i ́ \alpha ~ \sigma \tau о ~ \pi \rho \alpha ́ \sigma ı v o ~ \chi \rho ต ́ \mu \alpha ~ \sigma \varepsilon ~$ бхદ́бๆ $\mu \varepsilon$ то ко́ккıขо каı то $\mu \pi \lambda \varepsilon$.

 Bayer $\tau \tau \varepsilon ́ \lambda \nu \varepsilon \tau \alpha \iota ~ \sigma \tau \eta \nu$ FPGA $\kappa \alpha ı \eta$ FPGA $\mu \varepsilon \tau \eta \nu \sigma \varepsilon \iota \rho \alpha ́ ~ \tau \eta \varsigma \delta ı \alpha \omega \rho i \zeta \varepsilon \iota ~ \tau о v \pi i ́ v \alpha \kappa \alpha \alpha \nu \tau o ́ v ~ \sigma \varepsilon$

5.4. Automatic White Balance Estimator - Perfect Reflector

To White Balance عívaı $\mu l \alpha$ $\delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha ~ \alpha \varphi \alpha i ́ \rho \varepsilon \sigma \eta \varsigma ~ \tau \omega v ~ \mu \eta ~ \rho \varepsilon \alpha \lambda ı \sigma \tau ı к ळ ́ v ~ \chi \rho \omega \mu \alpha ́ \tau \omega v, ~$

 $\chi \rho \omega ́ \mu \alpha \tau о \varsigma ~ \alpha \pi o ́ ~ \mu ı \alpha ~ \pi \eta \gamma \eta ́ ~ \varphi \omega \tau o ́ s . ~ T o ~ \alpha v \theta \rho ต ́ \pi \imath v o ~ \mu \alpha ́ \tau ı ~ \varepsilon i ́ v \alpha ı ~ \alpha \pi o ́ \lambda v \tau \alpha ~ ı к \alpha v o ́ ~ v \alpha ~ к \rho i ́ v \varepsilon ı ~ \tau i ́ ~ \varepsilon i ́ v \alpha ı ~$
 ঠибкодía бто $\alpha v \tau о ́ \mu \alpha \tau о$ White Balance. (22)
 DIAPLOUS Automatic White Balance Estimator, о олоíos $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \mu 1 \alpha ~ \varepsilon v \varepsilon ́ \lambda ı \kappa \tau \eta ~ \mu о v \alpha ́ \delta \alpha ~ \pi о v ~$

 Reflector.

6.1. Eı $\sigma \alpha \gamma \omega \gamma \eta$

 $\alpha v \alpha \gamma \vee \dot{\rho ı \sigma \eta ~ \tau о v ~ к о ́ к к ı v o v ~ \chi \rho ต ́ \mu \alpha \tau о \varsigma . ~ ' Е л є ı \tau \alpha ~ \gamma i ́ v \varepsilon \tau \alpha ı ~ \pi \varepsilon \rho ı \gamma \rho \alpha \varphi \eta ́ ~ \tau о v ~ \alpha \lambda \gamma о р i ́ \theta \mu о v ~ \pi о v ~}$

6.2. Avaүvஸ́ןıซך $\chi \rho \omega ́ \mu \alpha \tau о \varsigma$

 pixel. $\Delta \eta \lambda \alpha \delta \dot{\eta} \gamma 1 \alpha$ к人́Өє $\chi \rho \dot{\rho} \mu \alpha$ тоv $\chi \omega ́ \rho о v ~ \gamma i ́ v \varepsilon \tau \alpha 1, ~ \mu \varepsilon ́ \sigma \omega ~ \tau \omega \nu ~ \varphi i ́ \lambda \tau \rho \omega \nu ~ \tau \eta \varsigma ~ к \alpha ́ \mu \varepsilon \rho \alpha \varsigma, ~$

 pixel.

$$
\text { percentage }=\left(\frac{r(\text { Red })}{r(\text { Red })+g(\text { Green })+b(\text { Blue })}\right) \cdot 100
$$

[^6]$$
\text { percentage }=\left(\frac{g(\text { Green })}{r(\text { Red })+g(\text { Green })+b(\text { Blue })}\right) \cdot 100
$$

$$
\text { percentage }=\left(\frac{b(\text { Blue })}{r(\text { Red })+g(\text { Green })+b(\text { Blue })}\right) \cdot 100
$$

 vлодоүıбнó $\tau \eta \varsigma ~ \delta 1 \alpha i ́ \rho \varepsilon \sigma \eta \varsigma$, каl $\delta i ́ v \varepsilon \tau \alpha ı ~ \sigma \tau 0 ~ \pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ A.

 кít ρ ıvo.

 $\tau \varepsilon \chi \vee ı \kappa \eta ́ s ~ w h i t e ~ b a l a n c e ~ \pi о v ~ \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha ı ~ \sigma \tau о ~ 5^{\circ} \kappa \varepsilon \varphi \alpha ́ \lambda \alpha ı$.

 олоі́ $\omega \vee \eta \alpha v \alpha ́ \lambda v \sigma \eta ~ \gamma i ́ v \varepsilon \tau \alpha l ~ \sigma \varepsilon ~ \varepsilon \pi o ́ \mu \varepsilon v \alpha ~ \kappa \varepsilon \varphi \alpha ́ \lambda \alpha ı \alpha$.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{X Axis}

\hline \multirow[t]{16}{*}{Y Axis

\downarrow} \& 0.1 \& 0.2 \& 0.3 \& 0.4 \& 0.5 \& 0.6 \& 0.7 \& 0.8 \& 0.9 \& 0.10

\hline \& 1.1 \& 1.2 \& 1.3 \& 1.4 \& 1.5 \& 1.6 \& 1.7 \& 1.8 \& 1.9 \& 1.10

\hline \& 2.1 \& 2.2 \& 2.3 \& 2.4 \& 2.5 \& 2.6 \& 2.7 \& 2.8 \& 2.9 \& 2.10

\hline \& 3.1 \& 3.2 \& 3.3 \& 3.4 \& 3.5 \& 3.6 \& 3.7 \& 3.8 \& 3.9 \& 3.10

\hline \& 4.1 \& 4.2 \& 4.3 \& 4.4 \& 4.5 \& 4.6 \& 4.7 \& 4.8 \& 4.9 \& 4.10

\hline \& 5.1 \& 5.2 \& 5.3 \& 5.4 \& 5.5 \& 5.6 \& 5.7 \& 5.8 \& 5.9 \& 5.10

\hline \& 6.1 \& 6.2 \& 6.3 \& 6.4 \& 6.5 \& 6.6 \& 6.7 \& 6.8 \& 6.9 \& 6.10

\hline \& 7.1 \& 7.2 \& 7.3 \& 7.4 \& 7.5 \& 7.6 \& 7.7 \& 7.8 \& 7.9 \& 7.10

\hline \& 8.1 \& 8.2 \& 8.3 \& 8.4 \& 8.5 \& 8.6 \& 8.7 \& 8.8 \& 8.9 \& 8.10

\hline \& 9.1 \& 9.2 \& 9.3 \& 9.4 \& 9.5 \& 9.6 \& 9.7 \& 9.8 \& 9.9 \& 9.10

\hline \& 10.1 \& 10.2 \& 10.3 \& 10.4 \& 10.5 \& 10.6 \& 10.7 \& 10.8 \& 10.9 \& 10.10

\hline \& 11.1 \& 11.2 \& 11.3 \& 11.4 \& 11.5 \& 11.6 \& 11.7 \& 11.8 \& 11.9 \& 11.10

\hline \& 12.1 \& 12.2 \& 12.3 \& 12.4 \& 12.5 \& 12.6 \& 12.7 \& 12.8 \& 12.9 \& 12.10

\hline \& 13.1 \& 13.2 \& 13.3 \& 13.4 \& 13.5 \& 13.6 \& 13.7 \& 13.8 \& 13.9 \& 13.10

\hline \& 14.1 \& 14.2 \& 14.3 \& 14.4 \& 14.5 \& 14.6 \& 14.7 \& 14.8 \& 14.9 \& 14.10

\hline \& 15.1 \& 15.2 \& 15.3 \& 15.4 \& 15.5 \& 15.6 \& 15.7 \& 15.8 \& 15.9 \& 15.10

\hline
\end{tabular}

$$
X:\left[\left(y_{1}, x_{1}\right),\left(y_{2}, x_{2}\right), \ldots,\left(y_{n}, x_{n}\right)\right] \text { ótou } n \in \mathbb{N}
$$

O vлодоүı

$$
\mathrm{M}(\mathrm{y}, \mathrm{x})=\left(\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}, \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)
$$

6.4. Connected Component Labeling (CCL)

 इтоv Пívaка 6-2 $\beta \lambda \varepsilon ́ \pi о ч \mu \varepsilon ~ \pi \omega ́ \varsigma ~ \varepsilon i ́ v \alpha ı ~ \delta ı \alpha \chi \omega \rho ı \sigma \mu \varepsilon ́ v \alpha ~ \tau \alpha ~ p i x e l ~ \sigma \varepsilon ~ \mu l \alpha ~ \varepsilon ı к o ́ v \alpha ~ \beta \alpha ́ \sigma \varepsilon ı ~ \tau о v ~$

 งォๆ́ๆ $\rho \propto$.

- $\Sigma \kappa \alpha v \alpha ́ \rho ı \sigma \mu \alpha$ тףऽ عוкóvas

 $\mu \varepsilon \tau о \pi \rho о \eta \gamma о v ́ \mu \varepsilon v o$ pixel $\sigma \tau о v \alpha ́ \xi o v \alpha$ y

 áğova y $\alpha v \tau i ́ \sigma \tau о \nprec \alpha ~ \varepsilon i ́ v \alpha ı ~ к о ́ к к ı v o ~ \tau o ́ \tau \varepsilon ~ \sigma \tau о ~ p i x e l ~ \sigma \tau о ~ о т о i ́ o ~ \beta p i ́ \sigma \kappa \varepsilon \tau \alpha ı, ~ \delta i ́ v \varepsilon \tau \alpha ı ~ \eta ~ i ́ \delta ı \alpha ~$

$\Sigma v \mu \pi \varepsilon \rho \alpha \dot{\sigma} \mu \mu \alpha \tau \alpha \kappa \alpha \iota \pi \rho о \beta \lambda \eta \prime \mu \alpha \tau \alpha \pi о v \alpha v \tau \iota \mu \varepsilon \tau \omega \pi i ́ \sigma \tau \eta \kappa \alpha v$

Tо $\pi \rho о ́ \beta \lambda \eta \mu \alpha ~ \pi о v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \pi \alpha \rho о v \sigma \iota \sigma \tau \varepsilon i ́ ~ \mu \varepsilon ~ \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta ~ \tau о v ~ \alpha \lambda \gamma о \rho i ́ \theta \mu о v ~$ $\alpha v \alpha \gamma \vee \omega ́ \rho ı \sigma \eta \varsigma ~ \chi \rho \omega ́ \mu \alpha \tau о \varsigma ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \tau о v ~ v \alpha ~ \kappa \alpha ́ v \varepsilon ı ~ \lambda \alpha ́ \theta о \varsigma ~ \varepsilon к \tau i ́ \mu \eta \sigma \eta ~ \tau о v ~ \chi \rho \omega ́ \mu \alpha \tau о \varsigma ~ \lambda o ́ \gamma \omega ~$
 $\sigma \omega \sigma \tau \eta ́ \alpha v \alpha \gamma \vee \omega ́ \rho \iota \sigma \eta ~ \chi \rho \omega ́ \mu \alpha \tau о \varsigma . \Sigma \tau о ~ \pi \varepsilon і \rho \alpha \mu \alpha ~ \tau о ~ \pi \rho о ́ \beta \lambda \eta \mu \alpha ~ \pi о v ~ \alpha \nu \tau \mu \varepsilon \tau \omega \pi i ́ \sigma \tau \eta \kappa \varepsilon ~ \eta ́ \tau \alpha \nu ~ \eta$
 Oı $\lambda \alpha ́ \mu \pi \varepsilon \varsigma ~ \pi \cup \rho \alpha \kappa \tau \omega ́ \sigma \varepsilon \omega \varsigma ~ \delta \varepsilon v ~ \pi \alpha \rho \alpha ́ \gamma о v v ~ \lambda \varepsilon v к o ́ ~ \varphi \omega \varsigma, ~ \alpha \lambda \lambda \alpha ́ ~ \mu ı \alpha ~ \alpha \pi o ́ \chi \rho \omega \sigma \eta ~ \tau о v ~ к о ́ к к ı v о v ~ \mu \varepsilon ~$ $\alpha \pi о \tau \varepsilon ̇ \lambda \varepsilon \sigma \mu \alpha$ то white balance $\tau \eta \varsigma \kappa \alpha ́ \mu \varepsilon \rho \alpha \varsigma ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~ \pi \rho о \sigma \alpha \rho \mu о \sigma \mu \varepsilon ́ v o ~ \sigma \varepsilon ~ \alpha v \tau o ́ . ~ A v \tau o ́ ~ \varepsilon i ́ \chi \varepsilon ~ \omega \varsigma ~$

 Connected Component Labeling $\mu \pi о \rho \varepsilon i ́ v \alpha \chi \rho \eta \sigma \mu о \pi о \not ŋ \theta \varepsilon i ́ ~ \mu \varepsilon \tau \varepsilon ́ \tau о ь о ~ \tau \rho о ́ \pi о ~ ต ́ \sigma \tau \varepsilon ~ \eta ~ к \alpha ́ \mu \varepsilon \rho \alpha$

 $\alpha \kappa o ́ \mu \alpha ~ \kappa \alpha ı v \alpha \tau \alpha \pi ı \alpha ́ v \varepsilon ı$.

Прото́ббเऽ $\gamma \iota \alpha \pi \varepsilon \rho \alpha \iota \tau \varepsilon ́ \rho \omega$ غ́ $\rho \varepsilon \cup v \alpha$

 т оочобобí α тоv v $\alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha \iota ~ \alpha \pi o ́ ~ \mu ı \alpha ~ \mu \pi \alpha \tau \alpha \rho i ́ \alpha . ~$
 $\gamma i v \varepsilon \tau \alpha ı \mu \varepsilon ́ \sigma \omega ~ \mu ı \alpha \varsigma ~ \theta ט ́ \rho \alpha \varsigma ~ E t h e r n e t . ~ A v \tau o ́ ~ \varepsilon ́ \chi \varepsilon ı ~ \omega \varsigma ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \eta v ~ \alpha v \alpha ́ \gamma \kappa \eta ~ \gamma ı \alpha ~ \varepsilon \pi ル \pi \lambda \varepsilon ́ o v ~$

 $\kappa \alpha \lambda \omega \delta i ́ o v . ~ A v \tau o ́ ~ \tau о ~ о \pi о i ́ o ~ \mu \pi о р \varepsilon i ́ ~ v \alpha ~ \gamma i ́ v \varepsilon ı ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ~ \varepsilon v o ́ s ~ c h i p ~ \tau о ~ о \pi о i ́ o ~ v \alpha ~ v \lambda о \pi о เ \varepsilon i ́ ~$

 $\kappa \alpha ı$ ó $\downarrow ~ \mu \varepsilon ~ \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta ~ к а \lambda \omega \delta i ́ o v, ~ \varepsilon \pi ı \tau \rho \varepsilon ́ л о \nu \tau \alpha \varsigma ~ \sigma \tau о v ~ \chi \rho \eta ́ \sigma \tau \eta ~ v \alpha ~ \gamma v \omega \rho i ́ \zeta \varepsilon ı ~ \tau \eta \nu ~ \tau о \pi о \theta \varepsilon \sigma i ́ \alpha ~ \tau о v ~$

1) ABS: Anti-lock Breaking System
2) AHB: Advanced High-performance Bus
3) API: Application Programming Interface
4) ASIC: Application Specific Integrated Circuit
5) ASSP: Application Specific Standard Product
6) ATM: Automate Teller Machine
7) BiCMOS: Bipolar Complementary Metal Oxide Semiconductor
8) BIT: Binary Digit
9) CAD: Computer Aided Design
10) CCL: Connected Component Labeling
11) CISC: Complex Instruction Set Computer
12) CMOS: Complementary Metal Oxide Semiconductor
13) CPU: Central Processing Unit
14) DEC: Digital Equipment Corporation
15) DLL: Dynamic-Link Library
16) DRAM: Dynamic Random Access Memory
17) DSP: Digital Signal Processing
18) EEPROM: Electrically Erasable Programmable Read Only Memory
19) EGCS: Experimental/Enhanced GNU Compiler System
20) FET: Field Effect Transistor
21) FPGA: Field Programmable Gate Array
22) FTP: File Transfer Protocol
23) GCC: GNU Compiler Collection
24) GNU: GNU's Not UNIX
25) GPS: Global Positioning System
26) HDL: Hardware Description Language
27) HTML: HyperText Markup Language
28) $I^{2} C$: Inter Integrated Circuit
29) IBM: International Business Machines Corporation
30) IP: Internet Protocol address
31) LSI: Large Scale Integration
32) MAC: Media Access Control address
33) MIPS: Microprocessor without Interlocked Pipeline Stages
34) MMU: Memory Management Unit
35) MOSFET: Metal Oxide Semiconductor Field Effect Transistor
36) $\mu \mathrm{C}$: Microcontroller
37) $\mu \mathrm{P}$: Microprocessor
38) NMOS: N-type Metal Oxide Semiconductor Logic
39) OAR: On-Line Application Research
40) PCB: Printed Circuit Board
41) PCI: Peripheral Component Interconnect
42) PLD: Programmable Logic Device
43) POSIX: Portable Operating System Interface
44) RAM: Random Access Memory
45) RISK: Reduced Instruction Set Computer
46) ROM: Read Only Memory
47) RTEMS: Real Time Executive for Multiprocessor Systems
48) SCL: Serial Clock
49) SDA: Serial Data
50) SOC: System on Chip
51) SPARC: Scalable Processor Architecture
52) SRAM: Static Random Access Memory
53) SUN: Stanford University Network
54) TCP: Transmission Control Protocol
55) TTL: Transistor Transistor Logic
56) UART: Universal Asynchronous Receiver/Transmitter
57) VAX: Virtual Address eXtension
58) VLSI: Very Large Scale Integration

Bı $\beta \lambda \iota о \gamma \rho \alpha \varphi i^{\alpha} \alpha$

1. Michael Barr, Anthony Massa (October 01, 2006). "Programming Embedded Systems'. O'Reilly.
2. Edward L. Lamie (2005). "Real-Time Embedded Multithreading: Using ThreadX and ARM". CMP Books.
3. Christian Baumann, University of Innsbruck (January 13, 2010). "Field Programmable Gate Array (FPGA)". Summary paper for the seminar "Embedded System Architecture".
4. Stephen Brown, Zvonko Vranesic (2003). "Fundamentals of Digital Logic with Verilog design". McGraw-Hill Companies, Inc.
5. Peter J. Ashenden (2010). "Чף甲ıкŋ́ $\sigma \chi \varepsilon \delta i ́ \alpha \sigma \eta$. Еvбต $\mu \alpha \tau \omega \mu \varepsilon ́ v \alpha$ $\sigma ט \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \mu \varepsilon$ VHDL". Elsevier.
6. Andrew S. Tanenbaum (2007). "H $\alpha \rho \chi \iota \tau \varepsilon \tau о v i ŋ ́ ~ \tau \omega v ~ v \pi о \lambda о \gamma ı \sigma \tau \omega ́ v . ~ M i \alpha ~ \delta о \mu \eta \mu \varepsilon ́ v \eta$ $\pi \rho о \sigma \varepsilon ́ \gamma \gamma \iota \sigma \eta " . К \lambda \varepsilon \iota \delta \alpha ́ \rho \imath \theta \mu о \varsigma$.
7. Steave Heath (1995). "Microprocessor Architecture: RISC, CISC and DSP $2^{\text {nd }}$ Edition". Butterworth-Heinemann Ltd.
8. Jason G. Tong, Ian D. L. Anderson and Mohammed A. S. Khalid (2006). "Soft-Core Processors for Embedded Systems". The 18th International Confernece on Microelectronics (ICM)

9. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman (2007). "Compilers: Principles, Techniques, \& Tools $2^{\text {nd }}$ Edition". Pearson Education, Inc.
10. Neil Weste, Kamran Eshraghian (1996). " $\Sigma \chi \delta \delta i \alpha \sigma \eta ~ О \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \omega v ~$ Кvкл $\omega \mu \dot{\alpha} \tau \omega v$ CMOS VLSF’. A. Палаб由тпрíov \& इIA O.E..
11. Brian Gough Forward by Richard M. Stallman (March 2004). "An introduction to GCC for the GNU compilers gcc and g++". Network Theory Ltd.

（1）http：／／www．xilinx．com／fpga／asic．htm（Проблє $\lambda_{\alpha ́ \sigma \tau \eta \kappa \varepsilon ~ \sigma \tau \iota \varsigma ~}^{29}$ Map兀íov 2013）
（2）http：／／www．electronicproducts．com／Digital ICs／Standard and Programmable Logic／ The evolution of FPGA coprocessing．aspx（Проблє $\lambda \dot{\alpha} \sigma \tau \eta \kappa \varepsilon \sigma \tau \iota \varsigma 29$ Maptíov 2013）
（3）http：／／infocenter．arm．com／help／index．jsp？topic＝／com．arm．doc．faqs／ka3839．html （Проблє $\alpha \dot{\alpha} \sigma \tau \eta \kappa \varepsilon ~ \sigma \tau \imath \zeta 4$ A $4 \rho \imath \lambda i ́ o v 2013)$
（4）http：／／www．esacademy．com／en／library／technical－articles－and－ documents／miscellaneous／i2c－bus／general－introduction／history－of－the－i2c－bus．html

（6）http：／／www．classic．nxp．com／acrobat download2／literature／9398／39340011．pdf （Проблє $\lambda \alpha \dot{\sigma} \tau \eta \kappa \varepsilon$ б兀ı̧ 8 A $\pi \rho ı \lambda$ íov 2013）
（7）https：／／www．sparkfun．com／datasheets／Sensors／Imaging／TCM8240MD．pdf （Проблє $\alpha \dot{\sigma} \sigma \tau \eta \kappa \varepsilon$ б兀ıร 8 A $\pi \rho \iota \lambda$ íov 2013）
（8）http：／／www．xilinx．com／support／documentation／data＿sheets／ds099．pdf （Проблє $\lambda \alpha ́ \sigma \tau \eta \kappa \varepsilon ~ \sigma \tau \iota \varsigma ~ 10$ A $\pi \rho \iota \lambda$ íov 2013）
（9）http：／／www．weblearn．hs－bremen．de／risse／RST／WS04／Leon2／Quellen／leon2－1．0．24－

（10）http：／／www．rtems．org／onlinedocs／releases／rtemsdocs－
4．6．5／share／rtems／pdf／started．pdf（Проблє λ óб $\tau \uparrow \kappa \varepsilon \sigma \tau \iota \varsigma ~ 11$ A $\pi \rho \iota \lambda$ íov 2013）
（11）http：／／sourceware．org／ml／crossgcc／2005－08／msg00114／l－cross－ltr．pdf（Проблєえ $\alpha \sigma \tau \eta к \varepsilon$ $\sigma \tau$ ģ 11 A $\pi \rho ı \lambda$ íov 2013）
（12）http：／／dide．flo．sch．gr／Plinet／Tutorials／Tutorials－C－Part－1．html（Проблє $\lambda \alpha ́ \sigma \tau \eta \kappa \varepsilon ~ \sigma \tau \iota \varsigma ~ 13$ A $\pi \rho$ i λ íov 2013）
（13）http：／／www．ti．com／lit／an／snoa099／snoa099．pdf（Проблє入д́бтףкє $\sigma \tau \iota \varsigma 13$ Aлрı入íov 2013）
（14）http：／／wiki．rtems．org／wiki／index．php／Main＿Page（Проблє $\lambda \alpha \dot{\sigma} \tau \eta \kappa \varepsilon ~ \sigma \tau \iota \varsigma ~ 13 ~ A \pi \rho ı \lambda i ́ o v ~$ 2013）
（15）http：／／www．rtems．org／（Проблє $\lambda \dot{\alpha} \sigma \tau \eta \kappa \varepsilon ~ \sigma \tau \iota \varsigma ~ 15$ A $\pi \rho \imath \lambda$ íov 2013）
（16）http：／／seg．ece．upatras．gr／Courses／bpl／cygwinUsersGuide．pdf（Проблє ${ }^{\alpha} \alpha \tau \tau \eta \kappa \varepsilon ~ \sigma \tau \iota \varsigma ~ 15$ A $\pi \rho \lambda \lambda$ íov 2013）
（17）http：／／makolas．blogspot．gr／2010／10／to－rgb－scratch．html（Проблєえáбтךкє $\sigma \tau ı \varsigma 15$ А $\pi \rho \iota \lambda$ íov 2013）
（18）http：／／www．teiath．gr／userfiles／eadsa＿web＿admin／lessons／c semester／2012－13－ arxitektonikiFotismosXoroiErgasias－theoryFotismos－Klonizakis．pdf（Проблє $\lambda \alpha ́ \sigma \tau \eta \kappa \varepsilon$ $\sigma \tau \iota \varsigma 16$ A $\pi \rho ı \lambda$ íov 2013）
(19) http://www.cold.org.gr/library/Downloads/docs/\�\�\�\�\�\�\�\% A1\%CE $\% 97 \% \mathrm{CE} \% \mathrm{~A} 3 \% \mathrm{CE} \% 97 \% 20 \% \mathrm{CE} \% \mathrm{~A} 7 \% \mathrm{CE} \% \mathrm{~A} 1 \% \mathrm{CE} \% \mathrm{~A} 9 \% \mathrm{CE} \% 9 \mathrm{C} \% \mathrm{CE} \%$ 91\%CE $\% \mathrm{~A} 4 \% \mathrm{CE} \% 9 \mathrm{~F} \% \mathrm{CE} \% \mathrm{~A} 3 \% 20-$
\%20\%CE\%A7\%CE\%A1\%CE\%A9\%CE\%9C\%CE\%91\%CE\%A4\%CE\%9F\%CE\%9C \%CE\%95\%CE\%A4\%CE\%A1\%CE\%99\%CE\%91.pdf (Проблє入áбтŋкє $\sigma \tau 1 \varsigma 16$ А $\pi \rho \downarrow \lambda$ íov 2013)
(20) http://www.diaplous.com/sitebuildercontent/sitebuilderfiles/dpls ipb05 wbest 0100. pdf (Проблє $\lambda \alpha \dot{\sigma} \tau \eta \kappa \varepsilon \sigma \tau \iota \varsigma 16$ A $\pi \rho \imath \lambda$ íov 2013)
(21) http://www.csie.ntu.edu.tw/~fuh/personal/ANovelAutomaticWhiteBalanceMethodfor Digital.pdf (Проблє $\lambda \alpha{ }^{\circ} \sigma \tau \eta \kappa \varepsilon \sigma \tau \iota \varsigma 16$ А $1 \rho \rho \lambda$ íov 2013)
(22) http://www.cambridgeincolour.com/tutorials/white-balance.htm (Проблє $\lambda \dot{\sigma} \sigma \tau \eta \kappa \varepsilon \sigma \tau \iota \varsigma$ 17 А $\pi \rho \downarrow \lambda$ íov 2013)
(23) http://www.cambridgeincolour.com/tutorials/camera-sensors.htm (Проблє $\lambda_{\alpha ́ \sigma \tau \eta \kappa \varepsilon}$ б兀ı̧ 17 A A $\rho \wedge \lambda$ íov 2013)

$\Pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ A

 $\varepsilon \kappa \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha \iota \sigma \tau \eta \nu$ FPGA.
void make_smooth() \{
int x ;
int y ;
unsigned long int pos2;
unsigned long int wf, wt, wf2, wf3;
unsigned long int array[255][255];
int gr,gg,gb;
unsigned long int count_x $=0$;
unsigned long int count_y $=0$;
unsigned long int sumup $=1$;
unsigned long int mean_x $=0$;
unsigned long int mean $_y=0$;
unsigned long int mean_x_1 $=0$;
unsigned long int mean_y_1 $=0$;
int $\mathrm{i}=0$;
int $\mathrm{j}=0$;
int percentageRed $=0$;
int percentageGreen $=0$;
int percentageBlue $=0$;
int foreground $=1$;
int background $=0$;
int NewLabel $=5$; //starting from 5 for security reasons
int lx $=0$;
int back $=0$; //one pixel back
int up $=0 ; / /$ one pixel up
int back_diagonal_up $=0$;
int back_diagonal_down $=0$;
int down $=0$;
int front $=0$;
int front_diagonal_up $=0$;
int front_diagonal_down $=0$;
unsigned long int count_x_sec $=0$;
unsigned long int count_y_sec $=0$;
unsigned long int sumup_sec $=0$;
unsigned long int mean_x_sec $=0$;
unsigned long int mean_y_sec $=0$;
unsigned long int mean_y_1_2 $=0$;
unsigned long int mean_x_1_2 $=0$;
int k;

```
/* ---------------------- Color identification
                        */
    for (y=0; y<255;y++)
    {
            pos2 = FRAME_POS | ( y <<AL_IMG_WIDTH_PWR);
        for (x=0;x<255;x++)
    {
        wf2 = IMG(pos2);
        gr = B3(wf2); gg = B2(wf2); gb = B0(wf2);
        int sum = gr + gg + gb;
        int red = gr*100;
        int green = gg*100;
        int blue = gb*100;
        percentageRed = (int) division(red, sum);
```

```
percentageGreen = (int) division(green, sum);
percentageBlue = (int) division(blue, sum);
if (percentageRed > percentageGreen && percentageRed > percentageBlue) {
gr=0xff;
gg=0xff;
gb=0x00;
array[x][y] = 1;
/* front = 1;
front_diagonal_up = 1;
front_diagonal_down = 1; */
} else {
array[x][y] = 0;
}
IMG(pos2)=(gr<<24)|(gg<<16)| (gb);
pos2+=4;
} //x for loop for the image
\} // y for loop for the image
```

```
/* ------------------ Conected component labeling
```

\qquad

```*/
    {
    {
```

 for (y=1; y<255;y++)
    ```
                    for (y=1; y<255;y++)
        for (x=1;x<255;x++)
        for (x=1;x<255;x++)
                if (array[x][y] == foreground)
                if (array[x][y] == foreground)
        {
        {
        back = array[x-1][y]; //labeled rows
```

 back = array[x-1][y]; //labeled rows
    ```
```

up = array[x][y-1]; //labeled columns
if(back == background \&\& up == background)
{
NewLabel++;
lx = NewLabel;
}
else if((back != up)\&\&(back != background)\&\&(up != background))
{
lx = up;
}
else if(up != background)
{
lx = up;
}
else if(back != background)
{
lx = back;
}
array[x][y] = lx;
}
} // x for loop for the matrix
} // y for loop for the matrix
for (}\textrm{k}=1;\textrm{k}<=\mathrm{ NewLabel-6; k++) // -6 is used because we start counting

```
```

{

```
{
    for ( y = 1; y < 255; y++ )
    for ( y = 1; y < 255; y++ )
    {
```

 {
    ```
NewLabel variable from 5
```

 for (x = 1; x < 255; x++)
 {
 if(array[x][y] == k)
 {
 count_x = count_x + x;
 count_y = count_y + y;
 sumup++;
 }
 }
 }
 calculate(mean_x, mean_y, sumup);
 }
    ```
\}

\section*{}
/* calculating the center of the object (for loop is used to magnify the targeted area */
\#include "DivisionDedousis.c"
```

void calculate(int count_x, int count_y, int sumup) {
unsigned long int mean_x = 0;
unsigned long int mean_y = 0;
unsigned long int wf;
unsigned long int mean_x_1 = 0;
unsigned long int mean_y_1 = 0;
int i = 0;
int j = 0;
unsigned long int pos2;

```
```

mean_x = (int) division(count_x, sumup);
mean_y = (int) division(count_y, sumup);
$\mathrm{wf}=0 \mathrm{xFFFF} 0000$;
for $(\mathrm{i}=1 ; \mathrm{i}<=10 ; \mathrm{i}++)\{$
mean_y_1 = mean_y + i;
for $(\mathrm{j}=1 ; \mathrm{j}<=10 ; \mathrm{j}++)\{$
mean_x_1 = mean_x +j ;
pos2 $=$ FRAME_POS $\mid($ mean_y_1<<AL_IMG_WIDTH_PWR) | (mean_x_1<<2);
$\operatorname{IMG}(\operatorname{pos} 2)=\mathrm{wf} ;$
\}
\}
\}

```

\section*{}
int dividend, divisor, remainder; int division(int tempdividend, int tempdivisor) \{
```

int quotient = 1;
if (tempdivisor == 0)
return 0;

```
```

while (tempdivisor <= tempdividend) {
/* Here divisor < dividend, therefore left shift (multiply by 2)
divisor and quotient */
tempdivisor = tempdivisor << 1;
quotient = quotient << 1;
}

```
/* We have reached the point where divisor > dividend,
therefore divide divisor and quotient by two */
tempdivisor \(=\) tempdivisor \(\gg 1\);
quotient \(=\) quotient \(\gg 1\);
/* Call division recursively for the difference to get the
exact quotient */
quotient \(=\) quotient + division(tempdividend - tempdivisor, divisor);
return quotient;
\}```


[^0]:    
    
    

[^1]:     $+60 \beta \alpha \theta \mu \dot{v}$ K K $\lambda \sigma$ íov.

[^2]:    
    
    

[^3]:     vтодоүıб $\mu$ ои́s.
    

[^4]:    
    

[^5]:     $\lambda \varepsilon \iota \tau о \cup \rho \gamma \iota \kappa \dot{v} \sigma \nu \sigma \tau \eta \mu \alpha ́ \tau \omega v$.

[^6]:    

