T．E．I．$\Delta Y T I K H \Sigma E \Lambda \Lambda A \Delta A \Sigma$ TРОФIM』N KAI $\triangle I A T P O Ф Н \Sigma ~$ TMHMA MHXANOAOГIAธ KAI YДATIN Ω I IOPSN

ПТҮХІАКН ЕРГАЕIA

ПPOEAIOPILMOE TH Σ Y $\Delta P A Y \Lambda I K H \Sigma ~ А Г \Omega Г I M O T H T A \Sigma ~$ KOPEエMOY TOY EAAФOYェ ェTO ПEДIO ME THN ME＠OДO TOY $\triangle I A \Pi E P A T O M E T P O Y ~ G U E L P H ~$

ПАNАГI』THะ ПANTEXHะ
A．M： 11138

I』AKEIM XATZHIQAKEIM
A．M： 9229

EIEHLHTHE：AP．NIKONAOE MAAAMOE
МЕЕОАОГГI，IOYNIO天 2014
$\Theta \varepsilon \omega \rho о и ́ \mu \varepsilon$ vлохןє́ $\omega \sigma \eta ́ \mu \alpha \varsigma ~ v \alpha ~ \varepsilon v \chi \alpha \rho ı \sigma \tau \eta ́ \sigma o v \mu \varepsilon ~ \tau о v ~ \varepsilon \pi \imath \beta \lambda \varepsilon ́ \pi о \nu \tau \alpha$
 Елıл $\lambda \varepsilon ́ o v, ~ Ө \varepsilon ́ \lambda о v \mu \varepsilon ~ v \alpha ~ \varepsilon v \chi \alpha \rho ı \sigma \tau \eta ́ \sigma o v \mu \varepsilon ~ \theta \varepsilon \rho \mu \alpha ́ ~ \tau o v ~ \pi \rho o ́ ~ \varepsilon \delta \rho o ~ \tau о v ~$

ПEPIEXOMENA

1. ЕIटАГ $\Omega \Gamma Н$ 4
$1.1 \Delta \mathrm{OMH}$ TH Σ ЕРГА Σ IA Σ 5
1.2. TO Е $\triangle \mathrm{A} Ф \mathrm{O}$ 6
1.3 TO E \triangle AФIKO NEPO 10
2. KINHटH TOY NEPOY $\Sigma T O$ E $\triangle A \Phi O \Sigma$. NOMOE TOY DARCY 18
3. ME@OUOI BAェIZOMENE $\Sigma \Sigma T$ POH $\Sigma T A \Theta E P H \Sigma K A T A \Sigma T A \Sigma H \Sigma ~(S T E A D Y-$ STATE FLOW) 22
3.1. H ANA Λ Y ΣH TOY WOODING. 22
3.2. H ME $\Theta \mathrm{O} \Delta \mathrm{O} \Sigma \mathrm{T} \Omega \mathrm{N}$ WHITE AND SULLY (1987) 24
4. EПIMEPOYЕ TMHMATA TOY OPГАNOY 26
4.1 ПРОЕТОIMAГIA ГІА ХРНГН 27
4.2 ХРНГН TOY ОРГАNOY 33
4.3 ҮПО ОГГГМОІ КАІ ЕФАРМОГЕ 48
5.ПЕIPAMATIKH $\triangle I A \Delta I K A \Sigma I A$ 58
5. Σ YМПЕРАЕМАТА. 123
7.ВІВАІОГРАФІА 124
8.ПАРАРТНМА 125

1. ЕІІАГЛГН

 $\sigma \tau \eta \nu \alpha \tau \mu \circ ́ \sigma \varphi \alpha \iota \rho \alpha \mu \varepsilon \tau \eta \delta 1 \alpha \delta 1 \kappa \alpha \sigma i ́ \alpha \tau \eta \varsigma \delta 1 \alpha \pi \nu \circ \eta \varsigma$.

 $\gamma \nu \omega ́ \sigma \eta ~ \tau \omega v \pi \alpha \rho \alpha \gamma o ́ v \tau \omega v \alpha \nu \tau \omega ́ v$.

 д́ $\rho \delta \varepsilon \cup \sigma \eta$ каı $\tau\rceil \varsigma ~ \delta \alpha ́ \alpha \rho \kappa \varepsilon ı \alpha \varsigma ~ \kappa \alpha ́ \theta \varepsilon ~ \alpha \rho \delta \varepsilon v ́ \sigma \varepsilon \omega \varsigma . ~$

 тоv $\varepsilon \delta \alpha ́ \varphi \rho o v \varsigma ~ v \alpha \mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho \varepsilon ı ~ v \varepsilon \rho o ́ . ~$

 Guelph permeameter π оо $\beta \alpha \sigma i \zeta \varepsilon \tau \alpha \iota ~ \sigma \tau \eta ~ \mu \varepsilon ́ \theta o \delta o ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta \varsigma ~ \mu \varepsilon ~ \tau \eta v ~ v ́ \pi \alpha \rho \xi ̆ \eta ~ \sigma \tau \alpha \theta \varepsilon \rho o v ́ ~ p o \rho \tau i ́ o v . ~$

1.1 \triangle OMH THГ EPГAटIA天

 $\tau \omega v \mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon \omega v \mu \varepsilon \tau \iota \varsigma \alpha \nu \tau i ́ \sigma \tau о \chi \chi \varepsilon \varsigma \gamma \rho \alpha \varphi ı \kappa \varepsilon ́ \varsigma \pi \alpha \rho \alpha \sigma \tau \alpha ́ \sigma \varepsilon ६ \varsigma$.

1.2. TO E $\triangle А \Phi O \Sigma$

 $\alpha \pi о Ө \eta ́ \kappa \varepsilon \cup \sigma \eta$ тоט vєрои́.

 $\gamma і \cup \varepsilon \tau \alpha ı \mu \varepsilon \mu \eta \chi \alpha v \iota \kappa \dot{\prime} \alpha v \alpha ́ \lambda v \sigma \eta$.

Характпрьбио́я $\sigma \omega \mu \alpha \tau \iota \delta i ́ \omega v$	Δ ı́́ $\mu \varepsilon \tau \rho о \varsigma$ ко́ккшข. mm	A $\rho \imath \theta$ нós ко́ккшv $\alpha v \alpha$ gr	Eлı¢о́vela ко́ккшv. $\mathrm{cm}^{2} / \mathrm{gr}$
(1)	(2)	(3)	(4)
А ${ }^{\prime} \mu \boldsymbol{\mu}$	2,00-0,05		
Подט́ χ оvбри́	2,00-1,00	90	11
Xovঠ¢ŋ́	1,00-0,50	720	23
	0,50-0,25	5700	45
$\Lambda \varepsilon \pi \tau$ ¢́	0,25-0,10	46000	91
По入v́ $\lambda \varepsilon \pi \tau \tau$ ¢́	0,10-0,05	722000	227
İús	0,05-0,002	5776000	454
Apyı $\lambda \lambda$ os	$<0,002$	90261000	8000000

 $\sigma \chi \varepsilon ́ \sigma \eta \mu \varepsilon \tau \eta \delta о \mu \eta$, кат α тo USDA Agricultural Information Handbook (1959), $\tau \alpha$

$\varepsilon \delta \dot{\alpha ́ \varphi \eta ~ o l ~ к о ́ к к о ı ~ \sigma \chi \eta \mu \alpha \tau i ́ ̧ o v v ~ \sigma v \sigma \sigma \omega \mu \alpha \tau ஸ ́ \mu \alpha \tau \alpha ~ \pi о v ~ \varepsilon ́ \chi о v v ~ \mu о р \varphi \eta ́ ~ к и ́ \beta \omega v ~ к \alpha ı ~}$

$\Sigma \chi \eta ́ \mu \alpha 1.1$: К $\alpha \tau \alpha ́ \tau \alpha \xi \eta ~ \varepsilon \delta \alpha \varphi \omega ́ v ~ \sigma \varepsilon \tau v ́ \pi о v \varsigma ~ v \varphi \eta ́ \varsigma ~ \alpha v \alpha ́ \lambda о \gamma \alpha \mu \varepsilon \tau \eta v$
 Handbook 18.

 $\alpha \pi о Ө \eta к \varepsilon \varepsilon ́ \sigma \varepsilon \omega \varsigma ~ \tau о \cup ~ v \varepsilon \rho о и ์ . ~$

1.3 TO EДAФIKO NEPO

 $\pi \varepsilon ́ \rho \alpha ~ \alpha \pi o ́ ~ \tau \eta ~ \beta \alpha \rho v ́ \tau \eta \tau \alpha, ~ \varepsilon v \varepsilon \rho \gamma о v ́ v ~ \kappa \alpha ı ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~ \delta v v \alpha ́ \mu \varepsilon ı \varsigma . ~ Y \pi o ́ ~ \tau \eta v ~ \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta ~ \tau о v \varsigma ~ \tau о ~ v \varepsilon \rho o ́ ~$

 $\sigma \omega \mu \alpha ́ \tau \omega v$ каı $\alpha v \tau i ́ \sigma \tau \rho о \varphi \alpha ~ \alpha v \alpha ́ \lambda о \gamma \eta ~ \mu \varepsilon ~ \tau о ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega v o ~ \tau \eta \varsigma ~ \mu \varepsilon \tau \alpha \xi ้ v ́ ~ \tau o v \varsigma ~ \alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon \omega \varsigma . ~ A v \tau o ́ ~$ $\varepsilon \kappa \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha 1 \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta$

$$
\begin{equation*}
F=c \frac{m M}{r^{2}} \tag{1.1}
\end{equation*}
$$

 (1.1) γ ívetal

$$
\begin{equation*}
F=G \frac{m M}{r^{2}} \tag{1.2}
\end{equation*}
$$

$\mathrm{F}=\mathrm{m} \alpha=\mathrm{G} \frac{m M}{R^{2}} \rightarrow a=g=\frac{G M}{R^{2}}$

 $\sigma \tau \eta \not \lambda \eta \varsigma ~ \kappa \alpha l ~ \varepsilon \kappa \varphi \rho \alpha ́ \zeta ̧ \varepsilon \tau \alpha l ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta$

$$
\begin{equation*}
p=\rho g h \tag{1.4}
\end{equation*}
$$

$p=g h$

 $\gamma \omega v i ́ \alpha ~ \varepsilon \pi \alpha \varphi \eta ́ \varsigma ~ v \varepsilon \rho \circ v ́-\gamma v \alpha \lambda ı o v ́ ~ \varepsilon i ́ v \alpha ı ~ \mu \eta \delta \varepsilon ́ v, ~ \delta \eta \lambda \alpha \delta ঠ ́ ~ \tau о ~ v \varepsilon \rho o ́ ~ \delta ı \beta \beta \rho \varepsilon ́ \chi \varepsilon ı ~ \tau о ~ \gamma v \alpha \lambda i ́ . ~ \Sigma \chi \varepsilon \tau ı к \alpha ́ ~ \mu \varepsilon ~ \tau о ~$

$\sigma=\frac{F}{L}$

$\Sigma \chi \eta ́ \mu \alpha 1.2$: Г $\omega v i ́ \varepsilon \varsigma ~ \varepsilon \pi \alpha \varphi \eta ́ \varsigma ~ \sigma \varepsilon ~ \mu ı \alpha ~ \lambda \varepsilon \varepsilon i ́ \alpha ~ \varepsilon \pi ı \varphi \alpha ́ v \varepsilon ı \alpha ~ к \alpha ı ~ \delta u ́ o ~$ סıацорєтıка́ vүюд́

 тáбๆ દívaı
$\sigma=\frac{F}{2 L}=\frac{F}{2(2 \pi r)}$

 $\sigma \omega \lambda \eta{ }^{2} v \alpha$ عívaı

$$
\begin{equation*}
F=(2 \pi r) \times \sigma \cos \theta \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
W=(\rho g) \times(\pi r 2) \times h \tag{1.9}
\end{equation*}
$$

$(\rho g) \times(\pi r 2) \times h=(2 \pi r) \times \sigma \times \cos \theta \rightarrow h=\frac{2 \sigma \cdot \cos \theta}{\rho g r}$

$h=\frac{2 \sigma}{\rho g r}$

 $\mu \varepsilon \tau \eta \sigma \chi \varepsilon ́ \sigma \eta$
$F=\mathrm{v} \frac{\mathrm{AV}}{\mathrm{L}} \rightarrow \mathrm{v}=\frac{\mathrm{FL}}{\mathrm{AV}}$

	İ¢́¢¢¢¢ vepov́
$0{ }^{\circ} \mathrm{C}$	$v=1,79$ centipoise
$20^{\circ} \mathrm{C}$	$v=1,01$
$40^{\circ} \mathrm{C}$	$v=0,66$

То $\varepsilon \delta \alpha \varphi ı к о ́ ~ v \varepsilon \rho o ́, ~ о ́ \pi \omega \varsigma ~ \kappa \alpha ı ~ \kappa \alpha ́ \theta \varepsilon ~ \alpha ́ \lambda \lambda о ~ \sigma ஸ ́ \mu \alpha ~ \sigma \tau \eta ~ \gamma \eta, ~ દ ́ \chi \varepsilon ı ~ \tau \eta ~ \delta ı к \eta ́ ~ \tau о v ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \alpha . ~ H ~ \varepsilon v \varepsilon ́ p \gamma \varepsilon ı \alpha ~$

$$
\begin{equation*}
E_{v}=\frac{m V^{2}}{2} \tag{1.13}
\end{equation*}
$$

 $\pi \alpha \rho \alpha \pi \alpha ́ v \omega \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau о ~ \beta \alpha ́ p o s ~ \tau о v ~ v \varepsilon \rho о ט ́ ~(m g), ~ о л о ́ \tau \varepsilon ~$

$$
\begin{equation*}
E v=\frac{V^{2}}{2 g} \tag{1.14}
\end{equation*}
$$

 ßрíбкєт $\alpha 1, \varepsilon к \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha l ~ \delta \varepsilon \alpha \pi o ́ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta$
$E g=m g z$

$$
\begin{equation*}
E g=z \tag{1.16}
\end{equation*}
$$

غ́ $\chi \varepsilon ı ~ \delta ı \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \mu \eta ́ \kappa о и \varsigma ~ \kappa \alpha ı ~ \lambda غ ́ \gamma \varepsilon \tau \alpha ı ~ ט ́ \psi о \varsigma ~ \theta ́ ̇ \sigma \varepsilon \omega \varsigma . ~$

$\mathrm{E}_{\mathrm{p}}=\frac{p}{m g}=\frac{p}{\gamma}$
 $\mu \varepsilon \tau \alpha \pi \alpha \rho \alpha \pi \alpha ́ v \omega$, ε ív $\alpha ı$
$H=E g+E p=z+\frac{p}{\gamma}$
$\kappa \alpha l ~ \lambda \varepsilon ́ \gamma \varepsilon \tau \alpha l ~ \cup \delta \rho \alpha \cup \lambda ı \kappa o ́ ~ ט ́ \psi о \varsigma$.

 $\sigma \chi \varepsilon ́ \sigma \eta$

$$
\begin{equation*}
\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}+\mathrm{z}+\frac{\mathrm{p}}{\gamma}=\sigma \tau \alpha \theta \varepsilon \rho \dot{o}^{\prime} \tag{1.18}
\end{equation*}
$$

 Bernoulli o兀ıç סúo θ ச́б\&ı̧ סíveı
$\frac{\mathrm{v}_{1}{ }^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}+\frac{\mathrm{p}_{1}}{\gamma}=\frac{\mathrm{v}_{2}{ }^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\frac{\mathrm{p}_{2}}{\gamma}+\Delta \mathrm{H}$

 η $\sigma \chi \varepsilon ́ \sigma \eta$ (1.20) $\alpha \pi \lambda$ олоเєít $\alpha \iota ~ \sigma \tau \eta \nu$
$\left(Z \iota+\frac{p_{1}}{\gamma}\right)-\left(z 2+\frac{p_{2}}{\gamma}\right)=H 1-H 2=\Delta H$
 бпиєía 1 каı 2. O λ óyоs
$i=\frac{H_{1}-H_{2}}{\Delta L}$
ๆ́ $\gamma \varepsilon \nu 1 \kappa о ́ \tau \varepsilon \rho \alpha$
$i=-\lim _{\Delta L \rightarrow 0} \frac{\Delta H}{L}=-\frac{d H}{d L}$

2. KINH

 т $\rho \chi 0 \varepsilon 1 \delta \omega v$ $\sigma \omega \lambda \eta ́ v \omega v$.

To 1856 о Darcy, $\mu \varepsilon \tau \alpha ́ \alpha \pi o ́ ~ \alpha v \alpha ́ \lambda \nu \sigma \varpi \eta ~ \tau \omega v ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha ́ \tau \omega v ~ \pi \varepsilon є \rho \alpha \mu \alpha ́ \tau \omega v ~ \sigma \varepsilon ~ \pi о р ஸ ́ \delta \eta ~ \mu \varepsilon ́ \sigma \alpha, ~$

 $\alpha v \alpha ́ \lambda o \gamma \eta ~ \pi \rho о \varsigma ~ \tau \eta \nu ~ v \delta \rho \alpha v \lambda 1 \kappa \eta ́ ~ \kappa \lambda i ́ \sigma \eta ~ \kappa \alpha l ~ \varepsilon v o ́ s ~ \pi \alpha \rho \alpha ́ \gamma о \nu \tau \alpha, ~ \gamma v \omega \sigma \tau о v ́ ~ \sigma \alpha \nu ~ \sigma u v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ́ \varsigma ~$
 $\varepsilon \kappa \varphi \rho \alpha ́ \zeta \varepsilon \iota ~ \tau о ~ v o ́ \mu o ~ \alpha v \tau o ́ ~ \varepsilon i ́ v \alpha ı ~$
$Q=-K \frac{d H}{d L} A$

 ($\mathrm{L}^{1} \mathrm{~T}-1^{-1}$).

 vүрои́ каı μ ह́боv каı

 Darcy

1) H $\varepsilon v \varepsilon ́ \rho \gamma \varepsilon ા \alpha ~ \alpha v \alpha ́ ~ \mu о v \alpha ́ \delta \alpha ~ \chi \rho o ́ v o v ~ \pi о v ~ о \varphi \varepsilon i ́ \lambda \varepsilon \tau \alpha ı ~ \sigma \tau ı \varsigma ~ \pi เ \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \varepsilon i ́ v \alpha ı ~$
$E p=-Q d p=-A \cdot V \cdot d p$
 орі́бтๆкаv $\pi \alpha \rho \alpha \pi \alpha ́ v \omega$.

$E g=-\rho g \sin \alpha d L=-\rho g \cdot A \cdot V \cdot d z$

 $\delta 1 \alpha \varphi о \rho \alpha ́$ v́ $\psi о \cup \varsigma ~ \mu \varepsilon \tau \alpha \xi ̌ v ́ \tau \omega v \alpha ́ \kappa \rho \omega v \tau \eta \varsigma ~ \sigma \tau \eta ŋ \lambda \eta \varsigma$.

$E L=\frac{v^{V^{2}}}{C d^{2}}$

$E=E_{L} \cdot A \cdot d L=\frac{v^{v^{2}}}{C d^{2}} A \cdot d L$

$\mathrm{Ep}+\mathrm{Eg}=\mathrm{E} \rightarrow$
$-A \cdot V \cdot d p-\rho g A \cdot V \cdot d z=\frac{v^{v^{2}}}{C d^{2}} A \cdot d L$

$\mathrm{V}=-\frac{\mathrm{Cd}^{2}}{\mathrm{v}} \frac{\mathrm{d}}{\mathrm{dL}}\left(\frac{\mathrm{p}}{\gamma}+\mathrm{z}\right) \rho \mathrm{g}=-\frac{\mathrm{Cd}^{2} \rho \mathrm{~g}}{\mathrm{v}} \frac{\mathrm{dH}}{\mathrm{dL}}$

H π обó $\tau \eta \tau \alpha$
$\mathrm{k}=\mathrm{Cd} 2$
 Avtık $\tau \alpha \dot{\alpha} \sigma \tau \alpha \sigma \eta ~ \tau \eta \varsigma ~ \sigma \chi \varepsilon ́ \sigma \varepsilon \omega \varsigma ~(2.8) ~ \sigma \tau \eta ~(2.7) ~ \delta i ́ v \varepsilon ı ~$
$\mathrm{V}=-\frac{\mathrm{k} \rho \mathrm{g}}{\mathrm{v}} \frac{\mathrm{dH}}{\mathrm{dL}}$
о́тои
$K=\frac{\mathrm{k} \rho \mathrm{g}}{\mathrm{v}}$
દívaı o $\sigma \cup v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ์ \varsigma ~ v \delta \rho о \pi \varepsilon \rho \alpha \tau o ́ \tau \eta \tau \alpha \varsigma ~ \eta ́ ~ D a r c y . ~ A v, ~ \sigma \tau \eta ~ \sigma u v \varepsilon ́ \chi \varepsilon 1 \alpha ~ \kappa \alpha ́ v o v \mu \varepsilon ~ \chi \rho \eta ́ \sigma \eta ~ \tau \eta \varsigma ~$ $\varepsilon \xi ૅ எ \omega ́ \sigma \varepsilon \omega \varsigma ~ \sigma u v \varepsilon \chi \varepsilon i ́ \alpha \varsigma$
$\mathrm{Q}=\mathrm{v} \cdot \mathrm{A}$
$\varphi \tau \alpha ́ v o u \mu \varepsilon \sigma \tau \eta \nu \tau \varepsilon \lambda ı \kappa \eta \dot{\sigma} \sigma \varepsilon ́ \sigma \eta$
$Q=-K \frac{d H}{d L} A$
 $\tau \eta \nu \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho \circ \alpha \cup \tau \eta ์ \delta \varepsilon v$ ह́ $\chi \varepsilon 1 \tau \varepsilon \theta \varepsilon i ́$.

 $\varepsilon \kappa \tau o ́ s ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \pi о v ~ \tau о ~ \varepsilon \pi i ́ \pi \varepsilon \delta o ~ \alpha v \tau o ́ ~ \sigma v v \varepsilon \pi \alpha ́ \gamma \varepsilon \tau \alpha l ~ \delta เ o ́ \gamma к \omega \sigma \eta ~ \eta ́ ~ \sigma и \rho \rho i ́ к v \omega \sigma \eta ~ \tau о и ~$

Kávovта¢ $\chi \rho \eta \dot{\sigma} \eta \tau \eta \varsigma ~ \sigma \chi \varepsilon ́ \sigma \varepsilon \omega \varsigma ~(1.23), ~ \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~(2.12) ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \gamma \rho \alpha \varphi \varepsilon i ́ ~ \mu \varepsilon ~ \tau \eta ~ \mu о \rho \varphi \eta ́$

$$
\begin{equation*}
Q / A=V=-K i \tag{2.13}
\end{equation*}
$$

 роŋ́ ($\pi \alpha \rho о \chi \eta ́) ~ \tau о v ~ v \varepsilon \rho о v ́ ~ \alpha v \alpha ́ ~ \mu о v \alpha ́ \delta \alpha ~ \delta ı \alpha \tau о \mu \eta ́ s ~ \tau о v ~ \pi о р \omega ́ \delta o v s ~ \mu \varepsilon ́ \sigma o v, ~$

$V a=\frac{Q}{A \cdot n}=\frac{V}{n}$

 $\mu \varepsilon$ тov $\alpha \rho ı \theta \mu o ́ ~ \tau o v ~ R e y n o l d s ~ \pi o v ~ \gamma ı \alpha ~ \tau \eta ~ \sigma ט \gamma к \varepsilon к р ц \mu \varepsilon ́ v \eta ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \varepsilon к \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~$

$$
\begin{equation*}
N=d V a \frac{\rho}{v} \tag{2.15}
\end{equation*}
$$

3. ME@OAOI BALIZOMENE Σ ITH POH $\Sigma T A \Theta E P H \Sigma$ KATATALH (STEADY - STATE FLOW)

3.1. H ANA 1 YΣH TOY WOODING

Н $\pi \rho о \sigma \varepsilon \gamma \gamma 1 \sigma \tau 1 \kappa \eta ́ \lambda v ́ \sigma \eta ~ \sigma \tau \alpha \theta \varepsilon \rho \eta ́ \varsigma ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \tau 0 v$ Wooding (1968) $\alpha \pi о \tau \varepsilon \lambda \varepsilon$ 白 $\tau \eta \beta \alpha ́ \sigma \eta \gamma 1 \alpha \tau \eta v$

 тov Gardner (1958) $\tau \eta \varsigma ~ v \delta \rho \alpha v \lambda ı ฑ ŋ \varsigma ~ \alpha \gamma \omega \gamma \mu о ́ \tau \eta \tau \alpha \varsigma ~ \sigma \tau о ~ \alpha \kappa о ́ \rho \varepsilon \sigma \tau о ~ \varepsilon ́ \delta \alpha \varphi о \varsigma . ~(E \xi ́ ́ \sigma \omega \sigma \eta ~ 3.1): ~$
$K(h)=K s \exp (\alpha 8 h)$
Oı $\pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho о \imath \mathrm{~K}_{\mathrm{s}} \kappa \alpha \imath \alpha^{*} \mu \pi о \rho о v ́ v v \alpha \varepsilon \kappa \tau \iota \mu \eta$ оо́v $\mu \varepsilon \beta \alpha ́ \sigma \eta \tau \eta \nu \varepsilon \xi i ́ \sigma \omega \sigma \eta \tau$ оv Wooding(1968), $\gamma 1 \alpha$

$Q(h 0)=\pi r 02 K(h 0)+4 r 0 \varphi(h 0)$

о́ π ov.

Q: о $\rho \cup \theta \mu$ о́ऽ $\delta \imath \eta \theta \eta \sigma \eta \varsigma ~ \sigma \varepsilon ~ \sigma u v \theta \eta ́ \kappa \varepsilon \varsigma ~ \sigma \tau \alpha \theta \varepsilon \rho \eta ́ \varsigma ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma, ~\left[L^{3} \mathrm{~T}^{-1}\right]$
$r_{0}: \quad \eta$ актív α тov סíбкоט [L]

$\varphi\left(h_{0}\right):$ то $\mu \eta \tau \rho$ ィко́ $\delta v \vee \alpha \mu$ ко́, [L]

$\varphi(h 0, h i)=\int_{h_{i}}^{h_{0}} K(h) d h$
'O $\pi 0$,

 $\pi \alpha \rho \alpha \lambda \lambda \alpha \kappa \tau \kappa \kappa ́ \tau \eta \tau \alpha$ тоv $\varepsilon \delta \alpha ́ \varphi \rho 0 \varsigma$ (Simimek et al. 1999a).

3.2. H ME@OДO玉 TQN WHITE AND SULLY (1987)

$\Sigma v ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \eta \mu \varepsilon ́ \theta o \delta o ~ \tau \omega \nu$ White and Sully (1987) то $\mu \eta \tau \rho \imath \kappa o ́ ~ \delta v \nu \alpha \mu \iota \kappa o ́ ~ \tau о v ~ \varepsilon \delta \alpha \varphi \iota к о v ́ ~ v \varepsilon \rho о v ́ ~$ $\varepsilon \kappa \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha \iota \omega \varsigma \varepsilon \xi \eta ŋ \varsigma(E \xi i ́ \sigma \omega \sigma \eta$ 3.4):
$\varphi(h)=\frac{b S^{2}}{\Delta \theta}$

о́лоv.

$S=\frac{2 q t^{0.5}}{\pi R^{2}}$
'О $\pi о$,
$q: \rho v \theta \mu$ ós $\delta \eta \eta \theta \eta \sigma \eta \varsigma$ оє $\mu 1 \kappa \rho$ о́ $\chi \rho о ́ v o,\left[\mathrm{~L}^{3} \mathrm{~T}^{-1}\right]$
$t:$ o $\chi \rho$ óvos, [T]
$\Delta \varepsilon \chi o ́ \mu \varepsilon v o$, ó оı $\eta \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho о \varsigma$ b $\lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \tau \eta \nu \tau \not \mu \eta ́ ~ 0.55$ (Smettem and Clothier. 1989),

$q_{x}=\pi R^{2} K+\frac{2.2 R S^{2}}{\Delta \theta}$

 1987,1989), єі́тє оı $\mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon ı \varsigma ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \lambda \eta \varphi \theta$ ои́v $\sigma \varepsilon \delta 1 \alpha \varphi о \rho \varepsilon \tau \iota \kappa \varepsilon ́ \varsigma ~ \theta \varepsilon ́ \sigma \varepsilon ı \varsigma, ~ \mu \varepsilon ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \eta \nu$
 $\kappa \alpha \imath \sigma \tau \eta \nu \pi \alpha \rho \alpha \mu \varepsilon ́ v o v \sigma \alpha$ vү $\rho \alpha \sigma i ́ \alpha ~ \sigma \tau о$ ह́ $\delta \alpha \varphi \circ \varsigma$.

4. EПIMEPOYГ TMHMATA TOY OPГANOY

1) $\Delta \varepsilon \xi \alpha \mu \varepsilon \vee \eta \dot{\eta} v \varepsilon \rho \circ v ́ \kappa \alpha \iota \sigma \omega \lambda \eta \dot{v} \alpha \varsigma$

2) Tрилávı $\delta 1 \alpha \sigma \tau \alpha \sigma ı \lambda o ́ \gamma \eta \sigma \eta \varsigma$
3) Tрилávı $\varepsilon \delta \dot{\alpha ́ \varphi \rho o v s ~}$
4) $\Delta \alpha к \tau \cup ́ \lambda ı \varsigma \varsigma ~ \tau \rho i ́ t o \delta o v ~ \beta \alpha ́ \sigma \eta \varsigma ~ \tau \rho i ́ \pi о \delta o v ~$
5) Bov́ $\tau \tau \alpha$ Well Prep
6) $\Sigma v v \alpha \rho \mu о \gamma \eta ́ ~ \delta \varepsilon \xi \propto \mu \varepsilon v \eta ́ s$
7) К $\lambda^{\prime} \mu \alpha \kappa \alpha \kappa \varepsilon \varphi \alpha \lambda \eta ́ \varsigma ~ \varphi \rho \varepsilon \alpha \tau i ́ o v ~ \& ~ \alpha ́ v \omega ~ \alpha \varepsilon \rho о \sigma \omega \lambda \eta ́ v \alpha \varsigma ~$

10). $\Sigma \omega \lambda \eta ́ v \alpha \varsigma ~ v \pi о \sigma \tau \eta ́ \rho ı \xi ̆ \eta \varsigma ~ \& ~ \chi \alpha \mu \eta \lambda о ́ \tau \varepsilon \rho о \varsigma ~ \alpha \varepsilon \rho о \sigma \omega \lambda \eta ́ v \alpha \varsigma ~$

12). По́ঠı α трíтобоv
13). Өұ́кๆ $\mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma$

4.1 ПРОЕТОІМАГIA ГIA XPHГH

Провтоццабía $\varphi \rho \varepsilon \alpha \tau$ тíov

$\Sigma \chi \eta \dot{\mu} \alpha 4.2 \Delta 1 \alpha \delta \kappa \alpha \sigma \dot{\prime} \alpha \dot{\varepsilon} \vee \omega \sigma \eta \varsigma \tau \omega \nu \varepsilon \xi \alpha \rho \tau \eta \mu \alpha ́ \tau \omega \nu$

 $\alpha v \alpha \sigma \kappa \alpha \varphi \mathfrak{\eta} \quad \kappa \alpha \imath \quad \tau \eta \nu \quad \pi \rho о \varepsilon \tau о \not \mu \alpha \sigma i ́ \alpha$
 $\sigma \nu \mu \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \iota ~ \sigma \tau \eta v \varepsilon \xi \dot{\alpha} \rho \tau \eta \sigma \eta$ тоv $\mu \varepsilon \tau \rho \eta \tau \eta$ бi $\quad \delta \pi \varepsilon \rho \alpha \tau о ́ \tau \eta \tau \alpha \varsigma \quad$ Guelph.
 η олоі́а оиvарнодоүві́таи о́люs $\pi \alpha \rho о v \sigma ı \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \sigma \tau \eta \nu$ عıкóvа 4.2 каı т тía $\varepsilon v \alpha \lambda \lambda \alpha ́ \xi \not \mu \alpha$ 乃оךөŋтіка́ $\varepsilon р \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \pi о \nu$ бuvঠと́ovtal $\sigma \tau \eta \nu \quad \lambda \alpha \beta \dot{\eta} \quad \delta 1 \alpha \mu \varepsilon ́ \sigma o v$
 $\sigma v v \delta v \alpha \sigma \mu \circ v ́$ Edelman η то $\tau \rho v \pi \alpha ́ v ı ~ \delta ı \alpha \sigma \tau \alpha \sigma ı \lambda o ́ \gamma \eta \sigma \eta \varsigma . ~$
 $\tau \eta \nu$ ع1ко́va 4.2 єло́v().

 $\varepsilon v \omega ́ ~ \alpha v \tau \alpha ́ ~(\alpha \pi 0) \sigma v v \delta \varepsilon ́ \sigma \nu \tau \alpha ı$.
 $\alpha \varphi \alpha ı \varepsilon ́ \sigma \varepsilon \imath \tau \imath \varsigma \mu \alpha ́ \zeta \varepsilon \varsigma ~ \tau о \cup \chi \omega ́ \mu \alpha \tau \circ \varsigma . K \alpha ́ v \tau \varepsilon ~ \delta ı \alpha ́ v o \imath \xi \eta ~ \tau \eta \varsigma ~ \tau \rho v ́ \pi \alpha \varsigma ~ \tau о v ~ \varphi \rho \varepsilon \alpha \tau i ́ o v ~ \pi \varepsilon \rho ı \sigma \tau \rho \varepsilon ́ \varphi о \nu \tau \alpha \varsigma ~ \tau \eta \nu$
 $\kappa \alpha ́ \tau \omega ~ \pi i ́ \varepsilon \sigma \eta ~ \sigma \tau \eta ~ \lambda \alpha \beta \eta ́ ~ o ́ \pi \omega \varsigma ~ \pi \alpha \rho о v \sigma ı \alpha ́ \zeta \varepsilon \tau \alpha 1 . ~ ' О \tau \alpha v ~ \tau о ~ \sigma \omega ́ \mu \alpha ~ \tau о v ~ \tau \rho v \pi \alpha v ı v ́ ~ \varepsilon i ́ v \alpha ı ~ \gamma \varepsilon \mu \alpha ́ \tau о, ~$ $\alpha \nu v \psi \omega ́ \sigma \tau \varepsilon ~ \tau о ~ \tau \rho v \pi \alpha ́ v \imath ~ \alpha \pi о ́ ~ \tau \eta \nu ~ \tau \rho v ́ \pi \alpha ~ \kappa \alpha ı ~ \alpha \varphi \alpha ı \varepsilon ́ \sigma \tau \varepsilon ~ \tau о ~ \sigma v \lambda \lambda \varepsilon \chi \theta \varepsilon ́ v ~ \delta \varepsilon i ́ \gamma \mu \alpha ~ \alpha \pi о ́ ~ \tau о ~ \sigma ळ ́ \mu \alpha ~ \tau о v ~$
 $\kappa \alpha \tau \alpha \kappa о ́ \rho \cup \varphi \alpha \gamma 1 \alpha$ v $\alpha \pi о \varphi \varepsilon v \chi \theta \varepsilon i ́ ~ \eta ~ v \pi \varepsilon \rho \beta о \lambda ı \kappa \eta$ $\delta \iota \varepsilon v ́ \rho v v \sigma \eta ~ \tau \eta \varsigma ~ \tau \rho v ́ \pi \alpha \varsigma ~ \tau о v ~ \varphi \rho \varepsilon \alpha \tau i ́ o v . ~$

 $\chi \omega ́ \mu \alpha \tau \alpha \kappa \alpha 1 \mu \varepsilon$ оноьо́ $о р \varphi \eta ~ \gamma \varepsilon \omega \mu \varepsilon \tau \rho i ́ \alpha . ~$

 ppeatíov.

 va хр \quad бцотоŋ θ ov́v (Reynolds et al, 2002).

Пробарио́бтє тๆ้ ßоט́ртба Well Prep Brush (єıкóva 4.4) бтоv ágova 兀ov трилаvıov́

 $\nu \varphi \eta ́ s ~ \chi \omega ́ \mu \alpha \tau \alpha$.
 ката́бтабๆ.

Пєрí $\beta \lambda \eta \mu \alpha \varphi \rho \varepsilon \alpha \tau$ íov

К $\alpha 兀 \alpha \sigma \tau \alpha \sigma \eta$ тоv v́ $\delta \alpha \tau 0 \varsigma \tau 0 v \varepsilon \delta \alpha ́ \varphi 0 v \varsigma$

 $\nu \varepsilon \rho о ́ ~ \mu \varepsilon ́ \chi \rho \imath ~ \varepsilon \pi \alpha ́ v \omega ~ к \alpha ı ~ \alpha ́ \varphi \eta \sigma \varepsilon ~ \tau о ~ v \varepsilon \rho o ́ ~ v \alpha ~ \delta \eta \eta \eta \eta \theta \varepsilon i ́ ~ \varepsilon v \tau \varepsilon \lambda \omega ́ \varsigma ~ \mu \varepsilon ́ \sigma \omega ~ \tau \eta \varsigma ~ \varepsilon \delta \alpha \varphi о \tau о \mu \eta ́ \varsigma . ~ A v \alpha ́ \lambda о \gamma \alpha ~ \mu \varepsilon ~$

 Guelph ($\tau \alpha \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \pi о v ~ \alpha \pi \alpha ı \tau о v ́ v \tau \alpha ı ~ \gamma \imath \alpha ~ \tau \eta \nu ~ \varepsilon \kappa \kappa \varepsilon ́ v \omega \sigma \eta ~ \tau о v ~ v \varepsilon \rho о v ́ ~ \alpha \pi o ́ ~ \tau о ~ \varphi \rho \varepsilon \alpha ́ \tau ı о ~ \delta \varepsilon v ~$

Abstract

4.2 ХРНГН TOY OPГANOY

$\Sigma v v \alpha \rho \mu о \gamma \eta ́ \tau 0 v \mu \varepsilon \tau \rho \eta \tau \eta ́ \delta \iota \alpha \pi \varepsilon \rho \alpha \tau$ óтŋ $\tau \alpha \varsigma$

 $\mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma ~ \tau о \cup \varsigma ~ \kappa \alpha ı ~ \gamma ı \alpha ~ v \alpha ~ \mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho о v \tau \alpha l ~ \alpha ́ v \varepsilon \tau \alpha ~ \sigma \tau ı \varsigma ~ \pi \varepsilon \rho ı \chi \chi ́ \varsigma ~ \tau \omega v ~ \mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon \omega v . ~ \mu \varepsilon \tau \rho \eta \tau \eta ́ \varsigma ~$

 $\alpha v \alpha ́ \gamma \kappa \eta \geqslant \alpha$ єлєєк兀 α ои́v $\tau \alpha$ лó $\delta \alpha$.

 тоv $\chi \alpha \mu \eta \lambda о ́ \tau \varepsilon \rho о ~ \alpha \varepsilon р о \sigma \omega \lambda \eta ́ v \alpha ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta ~ \sigma u ́ \zeta ̧ \varepsilon v \xi ̆ \eta ~ \mu \varepsilon ́ \chi \rho ı ~ \eta ~ к о р и \varphi о \gamma \rho \alpha \mu \mu \eta ́ ~ \sigma \tau о ~ \varepsilon \sigma \omega \tau \varepsilon \rho ו к о ́ ~ \tau \eta ร ~$

 $\varepsilon \nu \tau \varepsilon \lambda \omega ́ \varsigma ~ \sigma \tau \eta ~ \beta \alpha ́ \sigma \eta ~ \tau \eta \varsigma ~ \delta \varepsilon \xi \prec \alpha \mu \varepsilon v \eta ́ \varsigma$.

 vлобтท́คเร้ทร.

Eıкóva 4.9. A $\rho \imath \sigma \tau \rho \rho \dot{\alpha}: ~ \chi \alpha \mu \eta ं \lambda \omega \mu \alpha$ 兀ov GP $\mu \varepsilon ́ \sigma \alpha$ бто трі́тобо каı то $\varphi \rho \varepsilon \alpha ́ \tau \iota$.
 бактט́入ıo тоv трíтобоv $\mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta ~ \beta \alpha ́ \sigma \eta ~ \tau о v ~$ трі́тобои

 vло́чף.
 о́ $\pi \omega \varsigma ~ \pi \alpha \rho о \cup \sigma เ \alpha ́ \zeta ̧ \tau \alpha ı ~(E ı к o ́ v \alpha ~ 4.10) . ~$

 $\alpha \varepsilon \rho о \sigma \omega \lambda \eta \dot{v \alpha}$ бтоv $\mu \varepsilon ́ \sigma o ~ \alpha \varepsilon \rho о \sigma \omega \lambda \eta ́ v \alpha ~(E ı к o ́ v \alpha ~ 4.11 ~ \alpha \rho ı \sigma \tau \varepsilon \rho \alpha ́) . ~ O ~ \alpha ́ v \omega ~ \alpha \varepsilon \rho о \sigma \omega \lambda \eta ́ v \alpha \varsigma ~ \sigma u v \delta \varepsilon ́ \varepsilon \tau \alpha ı ~ \mu \varepsilon ~$

 $\left.\delta \varepsilon \xi \not \dot{\alpha}^{\alpha}\right)$.

 $\kappa \varepsilon \varphi \alpha \lambda \eta ́ s ~ \tau о v ~ \varphi \rho \varepsilon \alpha \tau i ́ o v ~(~ \beta \lambda . ~ E ı к о ́ v \alpha ~ 4.13 ~ \delta \varepsilon \xi \xi ı \alpha ́) . ~$

Пגท́р $\omega \sigma \eta$ vє $\rho о$ v́

 $\pi \tau v \sigma \sigma o ́ \mu \varepsilon v o$ боұєío v\&роv́

 $\tau \eta \varsigma \delta \varepsilon \xi \alpha \mu \varepsilon v \eta ́ \varsigma . ~ Г \imath \alpha ~ \varepsilon v к о \lambda i ́ \alpha, ~ \eta ~ \sigma v v \alpha \rho \mu о \gamma \eta ́ ~ \sigma \omega \lambda \eta ́ v \omega \nu \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma v v \delta \varepsilon \theta \varepsilon i ́ ~ \mu \varepsilon ~ \tau о ~ \pi \lambda \alpha \sigma \tau ו \kappa о ́ ~ \delta о \chi \varepsilon i ́ o ~$

 $\gamma 1 \alpha v \alpha \varepsilon \xi \alpha \sigma \varphi \alpha \lambda 1 \sigma \tau \varepsilon$ ó ótı $\delta \varepsilon v \theta \alpha$ vл $\alpha \rho \xi \varepsilon 1$ к $\alpha \mu i ́ \alpha ~ \delta ı \alpha \rho \rho о \eta ́ . ~$

ТолоӨச́тпбŋ тоv $\mu \varepsilon \tau \rho \eta \tau \eta ์ \delta ı \pi \varepsilon \rho \alpha \tau о ́ \tau \eta \tau \alpha \varsigma$

Eıкóva 4.15. Гє́ $\mu \iota \sigma \mu \alpha \tau \eta \varsigma \delta \varepsilon \xi \alpha \mu \varepsilon v \eta ́ \varsigma \mu \varepsilon$ vєро́

 $\mu \varepsilon ́ \tau \rho \eta \sigma \eta \varsigma . ~ K \alpha \tau \alpha ́ ~ \pi \varepsilon \rho ı o ́ \delta o v ̧ ̧ ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~ \alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau о ~ v \alpha ~ \delta \varepsilon \theta \varepsilon i ́ ~ \mu \varepsilon ~ \tau \alpha ı v i ́ \alpha ~ o ~ \sigma \omega \lambda \eta ́ v \alpha \varsigma ~ \varepsilon \xi ́ o ́ \delta o v ~ \tau о v ~$

 $\nu \alpha \mu \eta \nu \pi \varepsilon ́ \sigma o v v \chi \dot{\omega} \mu \alpha \tau \alpha \mu \varepsilon ́ \sigma \alpha$ бто $\varphi \rho \varepsilon \alpha ́ \tau 10$.

$\Delta ı \varepsilon v \varepsilon ́ \rho \gamma \varepsilon เ \alpha \mu \varepsilon ́ \tau \rho \eta \sigma \eta \varsigma$

 $\sigma \tau \eta \vee \beta \alpha \lambda \beta i ́ \delta \alpha \tau \omega v \delta \varepsilon \xi \alpha \mu \varepsilon v ต ́ v \delta \varepsilon \dot{\chi} \chi \varepsilon \varepsilon ı \pi \rho \circ \varsigma \tau \alpha \varepsilon \pi \alpha ́ v \omega$.

 Eıкóva 4.16).
 4.16).

 $\mu \varepsilon ́ \tau \rho \eta \sigma \eta$

 $\alpha v \alpha \lambda v ́ \sigma \varepsilon ı \varsigma ~ \mu ı \alpha \varsigma ~ \kappa \varepsilon \varphi \alpha \lambda \eta ́ \varsigma ~ \kappa \alpha ı ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \mu \pi о р о и ́ v ~ v \alpha ~ v \pi о \lambda о \gamma เ \sigma \tau о v ́ v ~ к \alpha \tau \alpha ́ ~ \mu \varepsilon ́ \sigma o ~ o ́ p o . ~$

 єठачодоүıкŋ́ $\delta 1 \alpha \pi \varepsilon \rho \alpha \tau$ о́тๆтац.

 'Eva $\pi \lambda \varepsilon о v \varepsilon ́ \kappa \tau \eta \mu \alpha ~ \tau \eta \varsigma ~ \delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha \varsigma ~ \mu \varepsilon \theta o ́ \delta o v ~ \mu о v o v ́ ~ Ф о р \tau i ́ o v ~ П i ́ \varepsilon \sigma \eta \varsigma ~, ~ \varepsilon v \tau о и ́ \tau o ı \varsigma, ~ \varepsilon i ́ v \alpha ı ~ o ́ \tau ı ~ \theta \alpha ~$

 vлодоүıбтои́v като́ $\mu \varepsilon ́ \sigma o ~ o ́ \rho o . ~$

 $\varepsilon \pi \lambda \lambda \varepsilon \chi \tau \varepsilon i ́ \eta ~ \kappa \alpha \tau \dot{\alpha} \lambda \lambda \eta \lambda \eta \delta \varepsilon \xi \alpha \mu \varepsilon v \eta, \mu \eta \nu$ а $\lambda \lambda \dot{\alpha} \xi \tau \varepsilon \tau \eta \beta \alpha \lambda \beta i \delta \alpha \delta \varepsilon \xi \alpha \mu \varepsilon v \sigma \dot{\sigma}$.

Еıко́vа 4.18. Елıдоүท́ $\tau \eta \varsigma ~ \varepsilon \sigma \omega \tau \varepsilon \rho \iota к \eta ́ \varsigma ~ \delta \varepsilon \xi \alpha \mu \varepsilon v \eta ́ \varsigma ~ \eta ́ ~ \tau о v ~ \sigma v v \delta v \alpha \sigma \mu о v ́ ~$ $\tau \omega v \delta v ́ o ~ \delta \varepsilon \xi \alpha \mu \varepsilon v \omega ́ v$.

 $\alpha \rho \gamma o ́ s ~ \pi o v ~ \varepsilon ́ v \alpha ~ \delta ı \alpha ́ \sigma \tau \eta \mu \alpha ~ \delta v ́ o ~ \lambda \varepsilon \pi \tau ஸ ́ v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \mu \eta v ~ \varepsilon i ́ v \alpha ı ~ \alpha \rho \kappa \varepsilon \tau \alpha ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda o ~ \gamma ı \alpha ~ v \alpha ~ \alpha v \imath \chi v v ́ \sigma \varepsilon ı ~ \mu ı \alpha ~$

КаӨорíбтє $\tau 0 v$ " $\rho v \theta \mu o ́ ~ \sigma \tau \alpha \theta \varepsilon \rho \eta ́ \varsigma ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \pi \tau \omega ́ \sigma \eta \varsigma " . ~ Г ı \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta, ~ v \pi о \lambda о \gamma i ́ \sigma \tau \varepsilon ~$

 $\delta \varepsilon \xi \alpha \mu \varepsilon v ฑ$.

$$
R=(6.5 \mathrm{~cm}-5.9 \mathrm{~cm}) /(2 \mathrm{~min})=.005 \mathrm{~cm} / \mathrm{sec}
$$

 Elrick and Reynolds, 2003).

 єкройя каı лрохюри́бєєє $\alpha \mu \varepsilon ́ \sigma \omega \varsigma ~ \sigma \tau о ~ \varepsilon \pi о ́ \mu \varepsilon к о ~ \beta \eta ́ \mu \alpha . ~$

 $\chi \rho \eta \sigma \mu$ олоєє́таı, $\alpha \nu v \psi \omega ́ v о v \tau \alpha \varsigma ~ \alpha \rho \gamma \alpha ́ ~ \tau о v ~ \alpha \varepsilon \rho о \sigma \omega \lambda \eta ́ v \alpha ~ \varepsilon ́ \omega \varsigma ~ o ́ \tau о v ~ \tau о ~ v ́ \psi о \varsigma ~ \tau о v ~ \varphi \rho \varepsilon \alpha \tau i ́ o v ~ H_{2} v \alpha$

 тov $\varphi \rho \varepsilon \alpha \tau$ íou
 $\kappa \lambda i ́ \mu \alpha \kappa \alpha \varsigma ~ \pi о \cup ~ v \pi \alpha ́ \rho \chi \varepsilon 1 ~ \varepsilon \pi \alpha ́ v \omega ~ \sigma \tau о \nu ~ \sigma \omega \lambda \eta ์ v \alpha ~ \tau \eta \varsigma ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı \kappa \eta ́ \varsigma ~ \delta \varepsilon \xi \alpha \mu \varepsilon v \eta ́ \varsigma ~ о ́ \pi \omega \varsigma ~ \pi о v ~ \kappa \alpha ́ v \alpha \tau \varepsilon ~ к \alpha ı ~ \mu \varepsilon$ to H_{1}.
 $\rho \cup \theta \mu o ́ \varsigma ~ \rho о \eta ́ \varsigma ~ \sigma \tau \alpha \theta \varepsilon \rho \eta ́ \varsigma ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \sigma \tau о \mathrm{H}_{2} \kappa \alpha \lambda \varepsilon i ́ \tau \alpha ı \mathrm{R}_{2}$.

 va vлодоүıбтои́v ка兀о́ $\mu \varepsilon ́ \sigma o ~ o ́ \rho o . ~$

 Av каı, то $\mathrm{K}_{\text {fs }} \kappa \alpha 1$ то $\Phi_{\mathrm{m}} \mu \pi$ ороv́v $\xi \varepsilon \chi \omega \rho ı \sigma \tau \alpha ́ v \alpha \kappa v \mu \alpha v \theta$ ov́v $\sigma \varepsilon \pi 0 \lambda \lambda \varepsilon ́ \varsigma ~ \tau \alpha ́ \xi \varepsilon \varepsilon ı \varsigma ~ \mu \varepsilon \gamma \varepsilon ́ \theta o v \varsigma ~ \sigma \varepsilon \varepsilon ́ v \alpha$

4.3 ҮПОЛОГІГМОІ КАІ ЕФАРМОГЕУ

ঠıалєрато́тŋ $\tau \alpha \varsigma$ Guelph

Oı vлодоүıбноí тov $\mu \varepsilon \tau \rho \eta \tau \eta ́ ~ \delta ı \alpha \pi \varepsilon \rho \alpha \tau о ́ \tau \eta \tau \alpha \varsigma ~ G u e l p h ~ \mu \pi о \rho о и ́ v ~ v \alpha ~ \varepsilon к \tau \varepsilon \lambda \varepsilon \sigma \theta o v ́ v ~ \varepsilon v ́ к о \lambda \alpha ~$
 $\alpha \rho \chi \varepsilon i ́ o ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \mu \varepsilon \tau \alpha \varphi о \rho \tau \omega \theta \varepsilon i ́ ~ \alpha \pi о ́ ~ \tau о v ~ \iota \sigma \tau о \chi \omega ́ \rho о ~ \tau \eta \varsigma ~ S o i l m o i s t u r e . ~$

 " $\pi \rho о \sigma \tau \alpha \tau \varepsilon \cup \mu \varepsilon ́ v \varepsilon \varsigma " . ~ Е \pi о \mu \varepsilon ́ v \omega ̧ ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~ \delta v v \alpha \tau o ́ ~ v \alpha ~ \alpha \lambda \lambda \alpha \chi \tau \varepsilon i ́ ~ \tau о ~ \pi \varepsilon \rho є \chi \chi o ́ \mu \varepsilon v o ~ \tau \omega v ~ \kappa \varepsilon \lambda ı ஸ ́ v, ~ \mu o ́ v o ~ \tau \alpha ~$

 $\chi \omega \rho і ́ \varsigma ~ \pi \rho о \varepsilon є \delta о \pi о і ́ \eta \sigma \eta$.

 $\pi \varepsilon \rho ı \chi ŋ ́ ~ o v o \mu \alpha ́ \zeta \varepsilon \tau \alpha 兀 ~ " M \varepsilon ́ \theta o \delta o c ̧ ~ M o v o v ́ ~ \varphi o \rho \tau i ́ o v ~ \pi i ́ \varepsilon \sigma \eta ร ~(1) " . Е к \tau \varepsilon \lambda \varepsilon i ́ ~ v \pi о \lambda о \gamma ı \sigma \mu о и ́ \varsigma ~ \mu \varepsilon ~ \chi \rho \eta ́ \sigma \eta ~ \tau \eta \varsigma ~$

 $\pi \varepsilon \rho เ о \chi \eta ́ s:$

	2.16	
	5	
	3	
ларака́тө арі $\theta \mu$ ои́ $):$	3	
	0.1500	
Res Type 2.16		
H 5		
3 $3 \quad \boldsymbol{\alpha}^{*}=$	0.12	cm^{-1}
H/a 1.667		
$\mathrm{a}^{*} 0.12 \quad \mathbf{C}=$	0.80315	
C0.01 0.809 Q $=$	0.0054	
C0.04 0.842		
C0.12 0.803 K $\mathrm{K}_{\mathrm{fs}}=$	9.82E-06	$\mathrm{cm} / \mathrm{sec}$
C0.36 0.803	5.89E-04	$\mathrm{cm} / \mathrm{min}$
C 0.803	$9.82 \mathrm{E}-08$	$\mathrm{m} / \mathrm{sec}$
R 0.150	2.32E-04	inch/min
Q 0.005	3.87E-06	inch/sec
pi 3.142		
$\Phi_{\mathrm{m}}=$	8.18E-05	$\mathrm{cm}^{2} / \mathrm{min}$

 ह́v $\alpha \nu \alpha к \varepsilon ́ \rho \alpha ı ~ \alpha \rho ı \theta \mu o ́ ~ \alpha \pi o ́ ~ \tau о ~ " 1 " ~ \varepsilon ́ \omega ̧ ~ \tau о ~ " 4 " . ~ П \alpha \rho \alpha к \alpha \lambda о v ́ \mu \varepsilon ~ \sigma \eta \mu \varepsilon ı ́ ́ \sigma \tau \varepsilon ~ o ́ \tau ı ~ \tau \alpha ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \alpha ~$
 $\kappa \alpha \tau \alpha ́ \tau \alpha \xi \eta, ~ \varepsilon 1 \sigma \alpha ́ \gamma \varepsilon \tau \varepsilon$ то "3". То $\tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ o ~ к \varepsilon \lambda i ́ ~ \varepsilon 1 \sigma \alpha \gamma \omega \gamma \eta ์ s ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \alpha \lambda \lambda \alpha \gamma \eta ́ ~ \tau \eta \varsigma ~ \sigma \tau \alpha ́ \theta \mu \eta \varsigma ~ \tau \eta \varsigma$ бт $\alpha \theta \varepsilon \rho \eta ́ \varsigma ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \tau о v ~ v \varepsilon \rho о v ́ . ~ A v \tau \eta ं ~ \eta ~ \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho о \varsigma ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \mu \varepsilon \tau \rho \eta \theta \varepsilon i ́ ~ \chi \rho \eta \sigma \mu о \pi о ı \dot{v \tau \alpha \varsigma ~ \tau о ~}$

 Poŋ́s $\Sigma \tau \alpha \theta \varepsilon \rho \eta ́ \varsigma ~ K \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma$.


```
    Eı\sigmaо́үцт\varepsilon т\etaท Aктiva Г\varepsilonஸ́т\rho\eta\sigma\eta\zeta ("а" \sigma\varepsilon cm):
    24.93
    21
    3
```



```
                                    \pi\alphaрака́тю арт0\muои́с):










Res Type 24.93
\begin{tabular}{rc}
\(H\) & 21 \\
\(a\) & 3 \\
\(H / a\) & 7 \\
\(a *\) & 0.04
\end{tabular}
\(\alpha^{*}=0.04 \mathrm{~cm}^{-1}\)
00.011 .79626
\(C=1.95202\)
\(\mathrm{Q}=0.10471\)
C0.04 1.95202
\(00.12 \quad 2.03675\)
C0.36 2.03675
\[
\mathrm{K}_{\mathrm{fs}}=3.34 \mathrm{E}-05 \mathrm{~cm} / \mathrm{sec}
\]
\[
2.00 \mathrm{E}-03 \mathrm{~cm} / \mathrm{min}
\]
C 1.95202
\[
3.34 \mathrm{E}-07 \mathrm{~m} / \mathrm{ses}
\]
R 0.252
Q. 0.10471
pi 3.1415
\[
\Phi_{\mathrm{m}}=8.34 \mathrm{E}-04 \mathrm{~cm}^{2} / \mathrm{min}
\]
```


 $\delta \varepsilon v$ cíval $\varepsilon \gamma \kappa \cup \rho \alpha$.

$\mathrm{Mévos}^{5} \mathrm{Opos}$

$$
\begin{array}{rl}
K_{f s}= & 1.91 \mathrm{E}-02 \mathrm{~cm} / \mathrm{min} \\
3.19 \mathrm{E}-04 & \mathrm{~cm} / \mathrm{sec} \\
& \begin{array}{ll}
7.54 \mathrm{E}-03 & \mathrm{inch} / \mathrm{min} \\
& 1.26 \mathrm{E}-04 \\
\mathrm{inch} / \mathrm{sec}
\end{array} \\
& \\
\phi_{m}= & 1.60 \mathrm{E}-01\left(\mathrm{~cm}^{2} / \mathrm{min}\right)
\end{array}
$$

	$\alpha *\left(\mathrm{~cm}^{-1}\right)$	Паро́үоขтас цор甲ท́s
 $\chi \omega ́ \rho \omega v$ vүєוоvо $\mu к \eta ́ \varsigma ~ \tau \alpha \varphi \eta ́ \varsigma, ~ \lambda ı \mu \nu \alpha i ́ \alpha ~ \eta ́ ~ \theta \alpha \lambda \alpha ́ \sigma \sigma \iota \alpha$ ๒乌ŋ́ $\mu \alpha \tau \alpha, \kappa . \lambda \pi$.	0,01	$C_{1}=\left(\frac{H_{2} / a}{2.081+0.121\left(H_{2} / a\right)}\right)^{0.672}$
$\sigma \chi \iota \tau \omega \dot{\delta} \eta) \kappa \alpha \iota \mu \eta \delta о \mu \eta \mu \varepsilon ́ v \alpha, \quad \mu \pi о \rho \varepsilon i ́ \varepsilon \pi i ́ \sigma \eta \varsigma v \alpha$ $\sigma \nu \mu \pi \varepsilon \rho і \lambda \eta \varphi \theta$ oúv $\lambda \varepsilon \pi \tau$ oí $\alpha ́ \mu \mu о$.	0,04	$\begin{aligned} & C_{1}=\left(\frac{H_{1} / a}{1.992+0.091\left(H_{1} / a\right)}\right)^{0.688} \\ & C_{2}=\left(\frac{H_{2} / a}{1.992+0.091\left(H_{2} / a\right)}\right)^{0.688} \end{aligned}$
$\mu \varepsilon ́ \chi \rho ı \pi \eta \lambda \omega ́ \delta \varepsilon \varsigma \sigma \cup \mu \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota \quad \varepsilon \pi i ́ \sigma \eta \varsigma \tau \iota \varsigma \mu \eta$ $\gamma \varepsilon \omega \rho \gamma$ кка́ $\chi \omega \dot{\mu} \alpha \tau \alpha$.	0,12	$\begin{aligned} & C_{1}=\left(\frac{H_{1} / a}{2.074+0.093\left(H_{1} / a\right)}\right)^{0.784} \\ & C_{2}=\left(\frac{H_{2} / a}{2.074+0.093\left(H_{2} / a\right)}\right)^{0.784} \end{aligned}$
 $\mu \alpha к р о \pi о ́ \rho о и я, ~ к . ~ \lambda \pi$.	0,36	$\begin{aligned} & C_{1}=\left(\frac{H_{1} / a}{2.074+0.093\left(H_{1} / a\right)}\right)^{0.784} \\ & C_{2}=\left(\frac{H_{2} / a}{2.074+0.093\left(H_{2} / a\right)}\right)^{0.784} \end{aligned}$

Пі́voкас 2

 $\tau \omega v \mu \varepsilon$ Өó $\delta \omega v \kappa \alpha ı \tau \omega v \tau ט ́ \pi \omega v ~ \delta \varepsilon \xi \alpha \mu \varepsilon v \omega ́ v$.

 $\sigma v v \delta v \alpha \sigma \mu o ́ s ~ \delta u ́ o ~ \delta \varepsilon \xi \alpha \mu \varepsilon v o ́ v) . ~$

MéӨodos μ иovov́ poptíov лíєøๆऽ,	$Q_{1}=\bar{R}_{1} \times 35.22$	$K_{\mathrm{fs}}=\frac{C_{1} \times Q_{1}}{2 \pi H_{1}^{2}+\pi \alpha^{2} C_{1}+2 \pi\left(\frac{H_{1}}{\alpha^{n}}\right)}$
		$\Phi m=\frac{C_{1} \times Q_{1}}{\left(2 \pi H_{1}^{2}+\pi \alpha^{2} C_{1}\right) a^{n}+2 \pi H_{1}}$
MéӨoסos μ оvov́ poptíov лíєбпऽ,	$Q_{1}=\bar{R}_{1} \times 2.16$	
$\pi i \varepsilon \sigma \eta \varsigma$	$Q_{1}=\bar{R}_{1} \times 35.22$	$G_{1}=\frac{H_{2} C_{1}}{\pi\left(2 H_{1} H_{2}\left(H_{2}-H_{1}\right)+\alpha^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)}$
	$Q_{2}=\bar{R}_{2} \times 35.22$	$G_{2}=\frac{H_{1} C_{2}}{\pi\left(2 H_{1} H_{2}\left(H_{2}-H_{1}\right)+\alpha^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)}$
MéӨoठos $\delta ı \pi \lambda$ ov́ $\varphi o \rho \tau i ́ o v ~$ $\pi i \not \subset \sigma \eta$ ¢,	$\begin{aligned} & Q_{1}=\bar{R} \times 2.16 \\ & O_{2}=\bar{R}_{2} \times 2.16 \end{aligned}$	$K_{f s}=G_{2} Q_{2}-G_{1} Q_{1}$
Ебюt¢рıки́ $\delta \varepsilon \xi \alpha \mu \varepsilon \vee \eta ์$		$G_{3}=\frac{\left(2 H_{2}^{2}+a^{2} C_{2}\right) C_{1}}{2 \pi\left(2 H_{1} H_{2}\left(H_{2}-H_{1}\right)+\alpha^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)}$
		$G_{4}=\frac{\left(2 H_{2}^{2}+a^{2} C_{1}\right) C_{2}}{2 \pi\left(2 H_{1} H_{2}\left(H_{2}-H_{1}\right)+\alpha^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)}$

Пıvакас 3

Үлодоүі́бтє $\tau \eta v \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho 0 \alpha:$

$$
\alpha=K_{f s} / \Phi_{m}
$$

Үлодоүі́бтє $\dot{\alpha} \lambda \lambda \varepsilon \varsigma ~ \sigma \chi \varepsilon \tau เ к \varepsilon ́ \varsigma ~ \pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho о v \varsigma: ~$

$$
\begin{gathered}
\Delta \theta=\theta_{\mathrm{fs}}-\theta_{\mathrm{l}} \\
S=\sqrt{2(\Delta \theta \mathrm{x} \Phi m)}
\end{gathered}
$$

 vঠатоалоррочŋтько́тๆ $\tau \alpha$ 兀оv $\chi \omega ́ \mu \alpha \tau о \varsigma\left(\mathrm{~cm} \mathrm{~min}^{-1 / 2}\right)$.

5.ПEIPAMATIKH \triangle IA

甲аívetaı $\sigma \tau \eta \nu$ عıкóv 5.1

EIKONA 5.2 غтоццaoía $\tau 0 v$ op γ ávov
 $5.2 \kappa \alpha 15.3$

Eiкóvo 5.4 इఇucio 1

Eıкóva 5.5 Толоөء́тпбๆ $\pi \varepsilon \rho \alpha \tau о ́ \mu \varepsilon \tau \rho о v ~ \sigma \tau о ~ \sigma \eta \mu \varepsilon i ́ o ~ 1 ~$

$\kappa \alpha \iota \alpha \rho \chi i ́ \sigma \alpha \mu \varepsilon \tau \iota \varsigma \mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon ı$ (єıко́vєऽ 5.7-5.8)

Tı̧ $\tau \iota \mu \varepsilon ́ \varsigma \alpha \pi o ́ ~ \tau \imath \varsigma ~ \mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau \alpha ~ \sigma \eta \mu \varepsilon i ́ \alpha ~ 2,3,6,7,8,9,10,11,12,13,14,17,20,21 ~ o ́ \pi \omega \varsigma ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ \sigma \tau \eta v ~$ عıкóva 5.9

Eıкóvo $5.9 \pi \varepsilon \iota \rho \alpha \mu \alpha \tau ı \kappa o ́ ̧ ~ \alpha \gamma \rho o ́ ̧ ~ \sigma \tau \alpha ~ 15 \mathrm{~cm}$

α / α	£HMEIO		£uvtetaүućves				
			x	y	BáӨos (cm)	R 1 $(\mathrm{~cm} / \mathrm{min})$	R2 (cm/min)
1	2	3/11/2013	279544	4249143	15,20	0,04	0,70
2	3	3/11/2013	279538	4249160	15,40	0,24	0,98
3	6	3/11/2013	279529	4249211	15,80	0,10	0,20
4	7	9/11/2013	279526	4249230	15,20	0,06	0,02
5	8	8/11/2013	279510	4249232	15,60	0,06	0,08
6	9	8/11/2013	279507	4249215	15,70	0,04	0,04
7	10	8/11/2013	279513	4249204	15,10	0,06	0,08
8	11	8/11/2013	279518	4249183	15,67	0,08	0,22
9	12	4/11/2013	279522	4249166	14,35	0,10	0,34
10	13	4/11/2013	279527	4249147	16,00	0,52	1,06
11	14	4/11/2013	279532	4249129	14,80	0,18	1,20
12	17	9/11/2013	279507	4249160	15,20	0,08	0,04
13	20	9/11/2013	279499	4249214	15,90	0,06	0,10
14	21	9/11/2013	279498	4249230	15,70	0,02	0,00

α / α	EHMEIO	Head Method)		甲ортíou тíधбทऽ (Double Head Method)	
		Ksf (average) (cm/min)	Ksf (average) (cm/day)	Ksf (cm/min)	Ksf (cm/day)
1	2	7,68E-03	1,11E+01	9,42E-02	1,36E+02
2	3	1,36E-02	1,95E+01	9,70E-02	1,40E+02
3	6	3,55E-03	5,11E+00	1,01E-02	1,46E+01
4	7	2,59E-04	3,73E-01	------	----
5	8	8,65E-04	1,25E+00	-------	---
6	9	4,42E-04	6,37E-01	---------	--------
7	10	8,65E-04	$1,25 \mathrm{E}+00$	---	------
8	11	2,30E-03	3,31E+00	----	-----
9	12	4,96E-03	7,15E+00	3,05E-02	4,39E+01
10	13	1,86E-02	2,69E+01	5,55E-02	7,99E+01
11	14	1,49E-02	2,14E+01	1,40E-01	2,02E+02
12	17	3,75E-04	5,40E-01	--------	------
13	20	1,07E-03	1,54E+00	-------	---
14	21	1,90E-05	2,74E-02	--------	----

LHMEIO 2:

Σ HMEIO 3:

LHMEIO 6:

ऽHMEIO 7:

上HMEIO 8:

Σ HMEIO 9:

2HMEIO 10:

इHMEIO 12:

इHMEIO 13:

इHMEIO 14:

इHMEIO 17:

इHMEIO 20:

इHMEIO 21:

Tıऽ $\tau \downarrow \varepsilon ́ \varsigma ~ \alpha \pi o ́ ~ \tau \imath \varsigma ~ \mu \varepsilon \tau р \eta ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau \alpha ~ \sigma \eta \mu \varepsilon i ́ \alpha ~ 1,4,5,7,15,16,17,18,19,20,21 ~ о ́ \pi \omega \varsigma ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ \sigma \tau \eta v ~$ عוкóvo 5.12

Eıкóva $5.12 \pi \varepsilon \iota \rho \alpha \mu \alpha \tau$ ıós $\alpha \gamma \rho$ ós $\sigma \tau \alpha 30 \mathrm{~cm}$

α / α	гHMEIO	Hиع ${ }^{\text {a }}$	£uVtetaүpદ́ves				
			x	y	BáOos (cm)	R 1 $(\mathrm{~cm} / \mathrm{min})$	R2 (cm/min)
1	1	1/11/2013	279548	4249126	30,20	0,10	1,22
2	4	2/11/2013	279535	4249178	30,60	0,06	2,50
3	5	1/11/2013	279532	4249198	30,06	1,08	0,34
4	7	31/10/2013	279529	4249232	31,20	0,02	0,52
5	15	5/6/2013	279518	4249123	30,06	0,04	0,06
6	16	7/6/2013	279514	4249140	30,02	0,04	0,06
7	17	6/6/2013	279509	4249157	30,00	0,40	0,40
8	18	4/10/2013	279507	4249174	30,30	0,04	0,14
9	19	15/10/2013	279501	4249197	30,70	0,14	0,22
10	20	18/10/2013	279499	4249211	30,40	0,04	0,02
11	21	6/6/2013	279496	4249224	31,60	0,12	0,16

Пі́vакая 5.13

α / α	EHMEIO	Head Method)		甲ортíou тí $\begin{aligned} \\ \text { (Double }\end{aligned}$ Head Method)	
		Ksf (average) (cm/min)	Ksf (average) (cm/day)	Ksf (cm/min)	Ksf (cm/day)
1	1	1,90E-02	2,74E+01	6,71E-02	9,66E+01
2	4	2,14E-03	$3,08 \mathrm{E}+00$	9,37E-03	1,35E+01
3	5	6,56E-03	9,45E+00	----------	-----------
4	7	4,60E-04	6,63E-01	1,91E-03	2,75E+00
5	15	1,50E-04	2,16E-01	9,10E-05	1,31E-01
6	16	1,50E-04	2,16E-01	9,10E-05	1,31E-01
7	17	1,79E-02	2,58E+01	-1,11E-02	-1,60E+01
8	18	3,09E-03	4,45E+00	5,13E-03	7,38E+00
9	19	7,32E-03	1,05E+01	1,10E-03	1,58E+00
10	20	1,53E-03	2,21E+00	-2,36E-03	-3,40E+00
11	21	5,90E-03	8,50E+00	-8,40E-04	-1,21E+00

Σ HMEIO 1:

इHMEIO 4:

Σ HMEIO 5:

Σ HMEIO 7:

इHMEIO 15:

2HMEIO 16:

2HMEIO 18:

इHMEIO 19:

2HMEIO 20:

LHMEIO 21:

 5.15

Eıкóva 5.15

α / α	EHMEIO		ミuvtetapućves				
			x	y	BáӨos (cm)	R1 (cm/min)	R2 (cm/min)
1	1	2/11/2013	279546	4249127	62,00	0,06	0,08
2	4	2/11/2013	279535	4249175	60,00	0,06	0,02
3	5	1/11/2013	279532	4249196	60,10	0,02	0,02
4	7	1/11/2013	279526	4249232	60,40	0,06	0,04
5	15	15/6/2013	279519	4249123	60,02	0,10	0,18
6	16	15/6/2013	279513	4249140	60,02	0,06	0,34
7	17	30/10/2013	279508	4249157	60,90	0,10	0,16
8	18	4/10/2013	279508	4249175	59,50	0,02	0,22
9	19	30/10/2013	279501	4249195	60,00	0,10	0,10
10	20	30/10/2013	279499	4249210	60,01	0,08	0,20
11	21	16/6/2013	279497	4249224	60,04	0,04	0,16

Пі́vакая 5.16

α / α	2HMEIO	Head Method)		甲ортíou тízøns (Double Head Method)	
		Ksf (average) (cm/min)	Ksf (average) (cm/day)	Ksf (cm/min)	Ksf (cm/day)
1	1	1,84E-04	2,64E-01	-2,61E-05	-3,76E-02
2	4	1,35E-04	1,95E-01	-2,59E-04	-3,73E-01
3	5	5,58E-05	8,04E-02	-3,46E-05	-4,98E-02
4	7	1,51E-04	2,18E-01	-1,81E-04	-2,61E-01
5	15	4,11E-04	5,92E-01	4,98E-04	7,17E-01
6	16	4,47E-03	6,44E+00	-----------	-----------
7	17	5,26E-03	7,58E+00	9,64E-04	1,39E+00
8	18	3,50E-03	5,03E+00	1,19E-02	1,72E+01
9	19	4,48E-03	6,46E+00	-2,78E-03	-4,00E+00
10	20	5,15E-03	7,41E+00	5,26E-03	7,58E+00
11	21	3,35E-03	$4,83 \mathrm{E}+00$	6,37E-03	9,18E+00

Пі́vакая 5.17

Σ HMEIO 1:

इHMEIO 4:

ᄃHMEIO 5:

इHMEIO 7:

2HMEIO 15:

इHMEIO 16:

LHMEIO 17:

इHMEIO 18:

इHMEIO 19:

इHMEIO 20:

LHMEIO 21:

6. Σ YMПEPALMATA

 $\mu \varepsilon ́ \chi \rho ı ~ \tau о ~ \beta \alpha ́ \theta$ оऽ $\mu \varepsilon \tau \rho \eta ́ \sigma \varepsilon \omega \varsigma, ~ \kappa \alpha ı ~ v \alpha ~ \lambda \alpha \mu ß \alpha ́ v o v \tau \alpha ı ~ \mu \varepsilon ́ \tau \rho \alpha ~ \gamma ı \alpha ~ \tau \eta v ~ \alpha \pi о \varphi v \gamma \eta ́ ~ \delta \eta \mu ı о ט \rho \gamma i ́ \alpha \varsigma ~ \varepsilon \pi i ́ \sigma \tau \rho \omega \sigma \eta \varsigma ~$ бта 兀охळ́ $\mu \alpha \tau \alpha$ тоט $\varphi \rho \varepsilon \alpha \tau i ́ o v ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta \varsigma, ~ o ́ \pi \omega \varsigma ~ \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha ı ~ \kappa \alpha ı ~ \sigma \tau ı \varsigma ~ o \delta \eta \gamma i ́ \varepsilon \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \tau о v ~ o \rho \gamma \alpha ́ v o v . ~$

7.ВІВАІОГРАФІА

 $\sigma \tau \alpha \tau \iota \sigma \tau \iota \kappa \eta ́ ~ \varepsilon \pi \varepsilon \xi \check{\rho \gamma \alpha \sigma i ́ \alpha ~ \tau \eta \varsigma ~ v \delta \rho \alpha v \lambda \iota \kappa \eta ́ \varsigma ~ \alpha \gamma \omega \gamma \iota \mu о ́ \tau \eta \tau \alpha \varsigma ~ к о \rho \varepsilon \sigma \mu о и ́ ~ \sigma \tau \eta \nu ~ v ́ \pi \alpha ı \theta \rho о . ~ П \rho \alpha к \tau ı к \alpha ́ ~} 2^{\text {ov }}$

 Iの $\alpha v \vee \eta ~ М \eta ́ \tau \tau \alpha, ~ Е к \delta o ́ \sigma \varepsilon ı \varsigma ~ Z H T H, ~ 535-551 . ~$
 $v \delta \rho \alpha \nu \lambda \iota \kappa \eta ́ \varsigma ~ \alpha \gamma \omega \gamma l \mu o ́ \tau \eta \tau \alpha \varsigma ~ к о \rho \varepsilon \sigma \mu о v ́ ~ \sigma \tau о ~ v ́ \pi \alpha ı \theta \rho о ~ \mu \varepsilon ~ \sigma \tau \alpha \tau \imath \sigma \tau \imath \kappa \varepsilon ́ \varsigma ~ к \alpha l ~ \gamma \varepsilon \omega \sigma \tau \alpha \tau \imath \sigma \tau \imath \kappa \varepsilon ́ \varsigma ~ \mu \varepsilon \theta o ́ \delta o v \varsigma . ~$

4) Reynolds, W.D. and Elrick, D.E., 1987. A laboratory and numerical assessment of the Guelph Permeameter method, Soil Sci., 144: 282-299
5) Reynolds, W.D. and Elrick, D.E., In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the a-Parameter using the Guelph permeameter, 1985, Soil Sci., 140, 293-302.
6) Reynolds, W.D., Elrick, D.E. and Clothier, B.E., The constant head well permeameter: Effect of unsaturated flow, Soil Sci., 1985, 139(2)

8.ПАРАРТНМА

solmossung Guelph Permeameter Calculations

 			Calculation formulas related to one-head and two-head methods, Where R is steady-state rate of fall of water in reservoir$(\mathrm{cm} / \mathrm{s}), K_{f z}$ is Soil saturated hydraulic conductivity $(\mathrm{cm} / \mathrm{s}), \phi_{m}$ is Soil matric flux potential $\left(\mathrm{cm}^{2} / \mathrm{s}\right), a^{*}$ is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_{1} is the first head of water established in borehole (cm), H_{2} is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).		
Soil Teture Structure Category	${ }^{+}\left(\mathrm{mm}^{1}\right)$	Shape Fastor	One Head,	$Q_{1}=\bar{R}_{1} \times 35.22$	$K_{f r}=\frac{C_{1} \times Q_{1}}{2 \pi H_{1}^{2}+\pi a^{2} C_{1}+2 \pi\left(\frac{H_{1}}{a^{2}}\right.}$
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine of marine sediments, etc.	0.01	$c_{1}=\left(\frac{H_{2 / a}}{2.081+0.121\left(H_{2 / a}\right)}\right)^{0.072}$	One Head, Inner Reservoir	$Q_{1}=\bar{R}_{1} \times 2.16$	$\Phi_{m}=\frac{c_{1} \times Q_{1}}{\left(2 \pi H_{1}^{2}+\pi a^{2} C_{1} a^{2}+2 \pi H_{1}\right.}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04		$\underset{\substack{\text { Two Head, } \\ \text { combined Reservoir }}}{\text { and }}$	$\begin{aligned} & Q_{1}=\bar{R}_{1} \times 35.22 \\ & Q_{2}=\bar{R}_{2} \times 35.22 \end{aligned}$	$\begin{aligned} & G_{1}=\frac{H_{2}\left(2 H_{1} H_{1}\left(H_{2}\left(H_{2}-H_{1}\right)+a^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)\right.}{\pi(2)_{1}} \\ & \sigma_{2}=\frac{H_{2}\left(2 H_{1} H_{2}\left(H_{2}-H_{2}\right)+a^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)}{} \end{aligned}$
categry most frequenty applicabice for agriculurual	0.12	$c_{1}=\left(\frac{H_{1} / a}{2.074+0.093}{ }^{H_{1} / a}\right)^{\alpha / 2 \pi / 4}$			$\begin{aligned} & K_{f}^{f}=G_{2} Q_{2}-G_{1} Q_{1} \\ & c_{3}=\frac{\left.\left(2 H_{3}^{2}+a^{2} c_{2}\right)_{2}\right)}{2 \pi\left(2 H_{1} H_{2} H_{2}\left(H_{2}-H_{1}\right)+a^{2}\left(H_{1} C_{2}-H_{2} C_{1}\right)\right)} \end{aligned}$
		(2074+0.093(\%/a)		$Q_{1}=\bar{R}_{1} \times 2.16$	$\sigma_{4}=\frac{\left(2 H_{1}^{2}+a^{2} c_{1}\right) c_{2}\left(2 H_{1} H_{2} H_{2}\left(H_{2}-H_{1}\right)+a^{2}\left(H_{1} c_{2}-H_{2} C_{12}\right)\right.}{2 \pi}$
Coarse and gravely sands; may also include some highly rnotured soils with large and or numerous cracks, macro pores, etc.	0.36			$Q_{2}=\bar{R}_{2} \times 2.16$	

solmosisuna Guelph Permeameter Calculations
$\square_{\text {Result }}^{\text {Inout }}$

solmosisuna Guelph Permeameter Calculations
$\square_{\text {Result }}^{\text {Input }}$

soilmolstune Guelph Permeameter Calculations

soimossurue Guelph Permeameter Calculations
\square Input

Double Head Method

Double Head Method	
Reseevoir Cossssectional aree in cm^{4}	
Enter the first water Head Height (" H 1 " in cm): Enter the second water Head Height ("H2" in cm):	
Enter the soil texture-structure category (enter one of the below numbers): (Compacted, structure-less, clayey or silty materials such as 1. Compacted, Structure-less, clayey or silty materials such landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc	
	$\alpha^{*}=0,12$
$\alpha=0.04$	
$a_{1}=0,002180$	
	$\mathrm{c}_{2}=1,666893$
C2-0.01: 1.51838	
C2-0.04: 1.62921	
$\mathrm{G}_{4}=0,010352$	
$\oplus_{m}=7,33 \mathrm{E}-05 \mathrm{~cm}^{2} / \mathrm{min}$	
$\theta_{\mathrm{t}}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$	
$\theta_{i}=0,4 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$	
Sorptivity 0,0061 (mmmin)	

solmosisuna Guelph Permeameter Calculations
\square Resur

Double Head Method

Double Head Method	
Reservoir Cross-sectional area in cm^{2} (enter " 35.22 " for Combined and "2.16" for Inner reservoir):	
$\begin{aligned} & \text { Enter the first water Head Height (" } \mathrm{H} 1 \text { " in } \mathrm{cm} \text {): } \\ & \text { Enter the second water Head Height (" } \mathrm{H} 2 \text { " in } \mathrm{cm} \text {): } \end{aligned}$	
Enter the soil teturestructure categor (enter one of the below numbers:\|]	
1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc	
	$\alpha^{*}=0{ }^{\text {cm }}$
$\alpha=$ \#\#\#\#\#\#	
Steady State Rate of Water Level Change ("R1" in $\mathrm{cm} / \mathrm{min}$) Steady State Rate of Water Level Change ("R2" in $\mathrm{cm} / \mathrm{min}$):	
$a_{1}=0,000000$	
Res Type: $0 \quad \mathrm{Q}_{2}=0,000000$	
C1-0.01: ${ }^{\text {atamat }}$	
$\mathrm{G}_{4}=$ \#SIAIP/0!	
$\oplus_{m}=$ \# \triangle IAIP/0! $\mathrm{cm}^{2} /$ min	
$\theta_{\mathrm{t}}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$	
$\theta_{i}=0,4 \mathrm{~cm}^{3} / \mathrm{m}^{3}$	
Sorrtivity \#\#IAIP/0! (cm min-*)	

137
solmosisuna Guelph Permeameter Calculations
\square Resur

Double Head Method

Double Head Method	
Reservoir Gross-sectional area in cm^{2} (enter " 35.22 " for Combined and " 2.16 " for Inner reservoir):	
Enter the first water Head Height ("H1" in cm) Enter the second water Head Height (" H 2 " in cm):	
Enter the Borenole Rafius ($\mathrm{a}^{\text {a }}$ in mm):	
Enter the soil texture-structure category (enter one of the below numbers): 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc	
	$\alpha^{*}=0 \quad \mathrm{~cm}$
	$\alpha=$ ="\#\#\#\#\#\#
Steady State Rate of Water Level Change ("R1" in $\mathrm{cm} / \mathrm{min}$): Steady State Rate of Water Level Change ("R2" in $\mathrm{cm} / \mathrm{min}$):	
	$\mathrm{a}_{1}=0,000000$
Res Type: 0	$\mathrm{a}_{2}=0,000000$
H1/a: \#\#\#\#\#\#	$c_{1}=0,000000$
C1-0.01: ${ }_{\text {H2/ }}^{\text {Hemmat }}$	$\mathrm{c}_{2}=0,000000$
	$\mathrm{G}_{1}=$ \# $\mathrm{ALAIP} / 0!$
C2-0.04: \#\#\#\#\#\#	
C2-0.12:	$\mathrm{G}_{2}=$ WIAIP/
C1-0.36: \#\#\#\#\# C2-0.3: \#numit	$\mathrm{G}_{3}=$ \# $\mathrm{ALAIP} / 0$!
	$\mathrm{G}_{4}=$ \# AIAIP/0! $^{\text {a }}$
	$\Theta_{m}=\# \Delta\|A\| P / 0!\mathrm{cm}^{2} / \mathrm{min}$
	$\theta_{6}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$
	$\theta_{i}=0,4 \mathrm{~cm}^{3} / \mathrm{m}^{3}$
	Sorptivity \# \#IAIP/0! (cmmin*)

soimossurue Guelph Permeameter Calculations
\square Input

solmosisuna Guelph Permeameter Calculations
\square Resur

solmosisuna Guelph Permeameter Calculations
\square Resur

若
".
"1
oै

 $\oplus_{m}=2,68 \mathrm{E}-03 \mathrm{~cm}^{2} /$ min $\omega_{m}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$

$\theta_{\mathrm{t}}=0$, | $\theta_{i}=$ | 0,4 | $\mathrm{~cm}^{3} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: |
| Sorrotivity | 0,0366 | $\left(\mathrm{~cm} \mathrm{~min}^{2}\right)$ |

soimossurue Guelph Permeameter Calculations
\square Resur

	\# \times \times 0 0 0	\%				
		(ebe				

solmosisuna Guelph Permeameter Calculations
\square Resur

 $\begin{aligned} 50^{\prime} 0 & =D \\ 2 \mathrm{I}^{\prime} 0 & ={ }^{2} \mathrm{D}\end{aligned}$

$a_{1}=0,001453$
$a_{2}=0,002180$
$c_{1}=0,803154$

N
0

号 $\Theta_{m}=28{ }^{2}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$

$\boldsymbol{\theta}_{\mathrm{t}}=0$. | $\theta_{i}=$ | 0,4 | $\mathrm{~cm}^{3} / \mathrm{cm}^{3}$ |
| :--- | :--- | :--- |
| Sorptivity | 0,0038 | $\left(\mathrm{~cm} \mathrm{~min}^{2}\right)$ |

solmosisuna Guelph Permeameter Calculations
\square Resur

2,70E-06
5,71E.05 $\mathrm{cm}^{2} / \mathrm{mm}$

solmosisuna Guelph Permeameter Calculations
\square Resur

$c_{2}=1,287543$

N
0
0
$\mathrm{G}_{4}=0,0224148$
$\mathrm{~K}_{\mathrm{t}}=1,52 \mathrm{E}=-06 \mathrm{~cm} / \mathrm{sec}$
号

$\theta_{i}=$	0,4	$\mathrm{~cm}^{3} / \mathrm{cm}^{3}$
Sorptivity	0,0038	$\left(\mathrm{~cm}^{2} \mathrm{~min}^{-n)}\right)$

solmosisuna Guelph Permeameter Calculations
\square Resur

Double Head Method

Double Head Method	
Reservoir Cross-sectional area in cm^{4}	
Enter the first water Head Height ("H1" in cm):Enter the second water Head Height ("H2" in cm):	
Enter the Borenole Radius ("za in cm):	
Enter the soil texture-structure category (enter one of the below numbers): 1. Compacted, Structure-less, clayey or silty materials such as 1. Compacted, structure-less, clayey or silty materials such landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc	
	$\alpha^{*}=0 \mathrm{~cm}^{*}$
$\alpha=$ ¢\#\#\#\#\#\#\#	
Steady State Rate of Water Level Change ("R1" in cm/min): Steady State Rate of Water Level Change ("R2" in cm/min):	
	$\mathrm{a}_{1}=0,000000$
Res Type: 0	$\mathrm{a}_{2}=0,000000$
H1/as: "\#\#um\#	$c_{1}=0,000000$
	$\mathrm{c}_{2}=0,000000$
	$\mathrm{G}_{3}=$ \#DIAIP/0!
C2-0.36: '\#\#\#\#\#\#	$\mathrm{G}_{4}=$ \#DIAIP/ $/$!
	$๑_{m}=$ \#LIAIP/0! $\mathrm{cm}^{2} / \mathrm{min}$
	$\theta_{\mathrm{t}}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$
	$\theta_{i}=0,4 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$
	Sorptivity \#AIAIP/O! (cm min*)

				答恐		
		(ex				

solmosisuna Guelph Permeameter Calculations
\square Resur

Double Head Method

Double Head Method	
Reservoir Cross-sectional area in cm^{2} (enter " 35.22 " for Combined and "2.16" for Inner reservoir):	
$\begin{aligned} & \text { Enter the first water Head Height (" } \mathrm{H} 1 \text { " in } \mathrm{cm} \text {): } \\ & \text { Enter the second water Head Height (" } \mathrm{H} 2 \text { " in } \mathrm{cm} \text {): } \end{aligned}$	
Enter the Borenole Rafius ("amin m)	
Enter the soil teturestructure categor (enter one of the below numbers:\|]	
1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc	
	$\alpha^{*}=0{ }^{\text {cm }}$
$\alpha=$ ᄃ\#\#\#\#\#\#\#	
Steady State Rate of Water Level Change ("R1" in $\mathrm{cm} / \mathrm{min}$) Steady State Rate of Water Level Change ("R2" in $\mathrm{cm} / \mathrm{min}$):	
$a_{1}=0,000000$	
Res Type: $0 \quad \mathrm{Q}_{2}=0,000000$	
H1/a: "\#\#\#\#\#\# ${ }_{\text {a }}$	
C1-0.01: ${ }^{\text {atamat }}$	
$\Theta_{m}=$ \#LIAIP/0! $\mathrm{cm}^{2} / \mathrm{min}$	
$\theta_{\mathrm{t}}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$	
$\theta_{i}=0,4 \quad \mathrm{~cm}^{3} / \mathrm{cm}^{3}$	
Sorrtivity \#DIAIP/O! (mm min*)	

solmosisuna Guelph Permeameter Calculations
\square Resur

				答恐		
		(ex				

solmosisuna Guelph Permeameter Calculations
\square Resur

soimolsture Guelph Permeameter Calculations

solmosisuna Guelph Permeameter Calculations
\square Resur

solmosisuna Guelph Permeameter Calculations
$\square_{\text {Result }}^{\text {mpout }}$

solmosisuna Guelph Permeameter Calculations
$\square_{\text {Result }}^{\text {nent }}$

$\substack{\text { Two Head } \\ \text { Imene Reservir }}$	$Q_{2}=\bar{R}_{2} \times 2.16$	$\phi_{m}=\sigma_{3} Q_{1}-\sigma_{1} Q_{2}$

solmosisuna Guelph Permeameter Calculations

		\%		cos
	-		(eay	

solmosisuna Guelph Permeameter Calculations
\square Resur

solmosisuna Guelph Permeameter Calculations
$\square_{\text {Result }}^{\text {inut }}$

Double Head Method

Double Head Method	
Reservoir Cross-sectional area in cm^{2} (enter " 35.22 " for Combined and " 2.16 " for Inner reservoir):	
Enter the first water Head Height ("H1" in cm) Enter the second water Head Height (" H 2 " in cm):	
Enter the soil texture-structure category (enter one of the below numbers): 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc	
	$\alpha^{*}=0 \quad \mathrm{~cm}$
	$\alpha=$ '\#\#IAIP/0!
Steady State Rate of Water Level Change ("R1" in $\mathrm{cm} / \mathrm{min}$): Steady State Rate of Water Level Change ("R2" in $\mathrm{cm} / \mathrm{min}$):	
	$\mathrm{a}_{1}=0,000000$
	$\mathrm{a}_{2}=0,000000$
Type H1/a: :\#\#\#\#\#	$c_{1}=0,000000$
	$\mathrm{c}_{2}=0,000000$
${ }_{\text {C2 }}^{\text {C2-0.0.0. }}$ (1):"\#\#\#\#\#	$\mathrm{G}_{1}=$ \#\#IAIP/0!
C2-0.04: "패패	
C1-0.12:"\#\#\#\#\#	$\mathrm{G}_{2}=$ \# $\mathrm{ALAIP} / 0$!
	$\mathrm{G}_{3}=$ \# \#IAIP/0!
C2-0.36:'„\#\#\#\#\#	
	$\Theta_{m}=\# \Delta\|A\| P / 0!\mathrm{cm}^{2} / \mathrm{min}$
	$\theta_{t}=0,65 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$
	$\theta_{i}=0,4 \mathrm{~cm}^{3} / \mathrm{cm}^{3}$
	Sorptivity \# \#IAIP/0! (cmmin*)

solmosisuna Guelph Permeameter Calculations
$\square_{\text {Result }}^{\text {mpout }}$

Single Head Method (1)	Single Head Method (2)		
$\begin{aligned} \text { Reservoir Cross-sectional area in cm" } & \\ \text { (enter "35.22" for Combined and "2.16" for Inner reservoir): } & 35,02 \\ \text { Enter water Head Height ("H" in cm): } & 5 \\ \text { Enter the Borehole Radius (" } \mathrm{a} \text { " in } \mathrm{cm} \text {): } & \mathbf{3}\end{aligned}$	Reservoir Cross-sectional area in $\mathrm{cm}{ }^{2}$ (enter "35.22" for Combined and " 2.16 " for Inner reservoir): 35,02 Enter water Head Height (" H " in cm): 15 Enter the Borehole Radius (" a " in cm): 3		
	${ }^{110}$	ter the soil texture-structure category (enter one of the below numbers): 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc Steady State Rate of Water Level Change (" R " in $\mathrm{cm} / \mathrm{min}$): $\quad 0,1600$ Res Type 35,02 \square	
Steady State Rate of Water Level Change ("R" in cm/min): $\quad \mathbf{0 , 1 2 0 0}$ Res Type $\begin{array}{rl}35,02 \\ H & 5\end{array}$			
${ }^{\circ}{ }^{3}{ }^{3}$			-0,12
			$\begin{aligned} & c=1,66693 \\ & Q=0,09387 \end{aligned}$
			= $6,93 \mathrm{Em}, 05 \mathrm{~cm} / \mathrm{mec}$
		${ }_{\text {cose }}^{\text {co.36 } 1.667} \mathrm{C}, 1,67$	
$\underbrace{\text { R }}_{\text {R }}$			
pil 3,142			$0_{m}=5,786.04 \mathrm{~cm}$

solmosisuna Guelph Permeameter Calculations
\square Resur

