TEI \triangle YTIKH乏 EMMA AA乏

EПЕЕЕРГАГIA $\triangle E \Delta O M E N \Omega N$

ME THN BOHOEIA＾OГIETIK』N

ФYへへیN．

P Ω TOYE ANTSNIO乏
$\pi \tau \cup \chi เ \alpha к \grave{~ \varepsilon \rho ү а б i ́ \alpha ~}$

ЕпıВ入є́т $\omega \nu$ K

 $\mu \varepsilon ́ p o u s ~ t o u ~ T \mu \eta ́ \mu \alpha т о \varsigma . ~$

ПЕРІЛНШН

 алараітптп каı аvaүкаí ү үı ó入ous.

 סívovtal $\varepsilon ф \alpha \rho \mu о ү \varepsilon ́ \varsigma ~ o ́ \pi \omega \varsigma ~ \alpha v \alpha ́ \lambda u \sigma \eta ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ Ө \varepsilon \rho \mu о к \rho \alpha \sigma i \alpha \varsigma ~ к \alpha l ~ \alpha v \alpha ́ \lambda \cup \sigma ך ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~$ ктףvotpoфías ató tov ОПЕКЕПЕ.
КЕФAへAIAгENIDE
1．EIEAГЛГН ГTA ЛОГІІТІКА ФҮМ＾A 2
1．1 ТА＾ОГІइTIKA ФY＾ヘA KAI H XPH乏H TOY乏 2
1.2 ТО ПЕРІВА＾ヘON TOY EXCEL 6
2．\triangle HMIOYРГІА ФҮ＾＾এN EPГA乏IA乏 10
2．1 ЕІГАГЛГН Δ E \triangle OMEN ΩN 10
2．2 EYPE ${ }^{2} \mathrm{~K}$ KAI ANTIKATA乏TA乏H $\Delta \mathrm{E} \Delta \mathrm{OMEN} \Omega \mathrm{N}$ 12
2．3 TAミINOMH乏H NİTA乏 $\triangle E \Delta O M E N \Omega N$ 13
2.4 XPHटH ФI＾TP $\Omega \mathrm{N}$ 16
2.5 ЕПІЛОГН КЕАІ Ω K KАІ ПЕРІОХНГ KEへI $\Omega \mathrm{N}$ 18
2.6 EIइAГЛГН ONOMATO乏 $\Sigma E ~ K E \Lambda I ~ ' H ~ П E P I O X H \Sigma ~ K E N I \Omega N ~$ 20
2.7 EMФANIइH ФY＾＾OY EPГАГIA乏 21
 23
3．EПЕЕЕРГАГIA $\Delta E \Delta O M E N \Omega N$ 24
3.1 ТҮПОІ 25
3.2 TENELTE 31
3.3 इYNAPTH乏EI 36
3.4 โYГКЕNTP 41
3．5 MEPIKA AOPOI $\Sigma \mathrm{MATA}$－$\triangle \mathrm{IAPOP} \mathrm{\Omega} \mathrm{\Sigma H}$ 43
3.6 AYTOMATH AOPOIइH 44
3.7 TIME乏 ¿ФAへMATO乏 46
3.8 ЕФАРМОГЕГ 47
4．ГРАФНМАТА 56
4．1 TA MEPH ENOг ГРАФНМАТОг 56
4.2Δ НМІОҮРГІА ГРАФНМАТОГ 57
4.3 EEIPE $\triangle E \Delta O M E N \Omega N$ 58
4.4 EI $\triangle \mathrm{H}$ ГРАФНМАТ $\Omega \mathrm{N}$ 58
4.5 ТРОПОПОІНГН ГРАФНМАТЯN 67
4.6 МОРФОПОІНГН ГРАФНМАТОГ 70
4.7 XPH 72
4.8 ЕКТҮПЛГН ГРАФНМАТОะ 74
5．ЕФАРМОГЕГ 76
ANANYミH $\triangle E \triangle O M E N \Omega N$ OEPMOKPA乏IA乏 ME XPH 76 E $\triangle A X I \Sigma T \Omega N$ TETPAГ Ω N ΩN
5．2 ANA＾YミH $\triangle E \Delta O M E N \Omega N ~ K T H N O T P O Ф I A \Sigma ~ А П О ~ T O N ~ O П Е К Е П Е ~$ 85
BIBヘIOГРАФIA 91

1 ЕІІАГЛГН ГТА ЛОГІІТІКА ФҮ＾МА

1.1 ТА ЛОГІ£ТІКА ФҮへへА КАІ H XPH乏H TOY乏

 Excel 2010 каı $\alpha v \grave{\kappa \varepsilon є \iota ~ \sigma \tau \eta ~ \sigma o v i ́ t \alpha ~ \pi \rho о ү \rho \alpha \mu \mu \alpha ́ t \omega v ~ ү \rho \alpha ф \varepsilon i ́ o u ~ M i c r o s o f t ~ O f f i c e ~ X P, ~ 2003, ~} 2007$ каı

 $\alpha v \alpha ́ \lambda u \sigma \eta ~ \sigma \chi \varepsilon ́ \sigma \varepsilon \omega v . ~$

 ouvaptńбєıऽ.

Eıкóva 2: To λ оүเбтıкó фú入入o Excel 2002 tทৎ $\sigma 0$ iitaç Microsoft Office XP

Eıкóva 3: To $\lambda о ү \iota \sigma \tau เ \kappa o ́ ~ ф u ́ \lambda \lambda o ~ E x c e l ~ 2007 ~ \tau ף ৎ ~ \sigma o u i ́ t a ৎ ~ M i c r o s o f t ~ O f f i c e ~ 2007 ~$

1.2 ТО ПЕРІВА^^ON TOY EXCEL

 1048576 Грацнє́я.

 $\lambda \alpha \dot{\alpha} \eta \eta \pi \lambda \eta \kappa \tau \rho о \lambda o ́ v \eta \sigma \eta \varsigma$.

 $\pi \lambda \eta к т \rho о \lambda o ́ ү \imath o$.

Eıкóva 7: H Граццй Mevoú

 ouva

Eıкóva 8: H Грации́ Eрүа入єíшv

 үрафпна́т ωv к $\lambda \pi$.

Arial

 $\pi \rho о \eta \gamma o u ́ \mu \varepsilon v o ~ \alpha v \alpha \delta \cup o ́ \mu \varepsilon v o ~ \mu \varepsilon v o u ́, ~ \gamma ı \alpha ~ v \alpha ~ \varepsilon v \varepsilon \rho ү о \pi о เ ท ́ \sigma о u \mu \varepsilon ~ \alpha u t \varepsilon ́ \varsigma ~ \pi о u ~ \mu \alpha \varsigma ~ \varepsilon v \delta ı \alpha ф \varepsilon ́ \rho o u v . ~$

2 ДНМІОҮРГІА ФҮ＾＾এn EPГA乏IA乏

2．1 ЕІІАГЛГН \triangle E \triangle OMEN ΩN

 סıєúӨuvon tou عvepyoú кع入ıoú દívaı B3．

 аркві́：

 Excel．

 о́ $\pi \omega \varsigma+,-, \$, \%,()$ кт λ ．

 ع $\lambda \varepsilon$ ह́үxou t ωv Windows.

АYTOMATH EİAГЛГН $\triangle E \Delta O M E N \Omega N$

 $\varepsilon \beta \delta$ о $\alpha \dot{\delta}$ ос к $\alpha \iota \alpha \dot{\alpha} \lambda \lambda \alpha$.

 $\lambda i \sigma \tau \varepsilon \varsigma ~ \sigma \tau о ~ \pi \varepsilon \delta i o ~ П \rho о \sigma \alpha \rho \mu о \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \lambda i \sigma \tau \varepsilon \varsigma . ~$

2.2 EYPE

 $\beta \dot{\prime} \mu \alpha \tau \alpha:$

 бuvŋӨıб μ ह́vouc tрótouc:

- Пата́ $\mu \varepsilon$ to $\sigma u v \delta u \alpha \sigma \mu o ́ ~ t \omega v ~ \pi \lambda n ́ к т \rho \omega v ~ C t r l+F . ~$

 avtiotolzo кع λi í.
 крıтท́pı α बva̧ท́tnoņ:

 to FB30?

 Eppaoías.

 Eúpeøך тоu каı Avtiкато́бт $\alpha \sigma \eta \mu \varepsilon \alpha v \tau i \sigma \tau о \iota \chi \alpha$.

2.3 TA三INOMHEH NIETA乏 $\Delta E \Delta O M E N \Omega N$

 єп兀кєф λ 入í $\delta \varsigma$.

 $\alpha \pi о т \varepsilon ่ \lambda \varepsilon \sigma \mu \alpha$ ع $\mu \phi \alpha v i \zeta \varepsilon \tau \alpha \iota ~ \sigma t \eta v ~ o Ө o ́ v \eta ~ \mu \alpha \varsigma . ~$

 $\mu \varepsilon \gamma \alpha \lambda$ út $\varepsilon \rho \eta \kappa \lambda \pi$

	A	B	C	D	E
1	α / α	Yтоката́бтпри		Еккряияís	
2	1	Каро́ítoss	23	0	
3	2	Пátpos	114	12	
4	3	A ${ }^{\text {anvóv }}$	897	296	
5	4	Өع $\sigma / \mathrm{k} \mathrm{\eta}$ ¢	732	111	
6	5	Нракдвíou	59	2	
7	6	Ançowopoútroins	12	1	
8	7	lwawivey	64	14	
9					

Eıкóva 10：Архเкท́ بорфท́ عvóç Фú入入ou Epүaбiac

	A	B	C	D	E
1	ω / α	Yтоката́бтыра		Eккряияis	
2	6		12	1	
3	1	Kapóitoas	23	0	
4	5	Нрокдвíou	59	2	
5	7	lwawivov	64	14	
6	2	Пárpas	114	12	
7	4	Өعo/kns	732	111	
8	3	ABnvóv	897	296	
9					

 Baбıки́я Гра $\mu \mu n ่ \varsigma ~ E \rho \gamma \alpha \lambda \varepsilon i ́ \omega v$ Eıкóva 12.
 Г $\rho \alpha \mu \mu$ и́s Ерүа入єi ωv.

	A	B	C	D	E
1	α / \boldsymbol{a}	Үтоката́бтпиа	Nés aitijoqictiohitúv	Еккряцєís	
2	3	A.tnvóv	897	296	
3	6	Ale ¢ $^{\text {avorpoútroins }}$	12	1	
4	5	Hpakizíou	59	2	
5	4	Өعб/kns	732	111	
6	7	lwawivov	64	14	
7	1	Карбоítоая	23	0	
8	2	Пárpas	114	12	
9					

2.4 XPH乏Н ФI^TP Ω N

 $\varepsilon v t o \lambda \varepsilon ́ \varsigma ~ ү ı \alpha ~ т о ~ ф ı \lambda \tau \rho \alpha ́ \rho ı \sigma \mu \alpha ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v: ~$

 катабта́бદıৎ $\varepsilon \mu \phi \alpha ́ v i \sigma \eta \varsigma ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega \omega$.

 крıти́рı α лоu $\theta \varepsilon ́ \sigma \alpha \mu \varepsilon . ~$

H XPHГH TOY AYTOMATOY ФI^TPOY

	A	B	C	D
1	A．Ф．M．	－	EП＠NYMO	ONOMA
2	8700988865	TPIKAMAN	AIBAAIQTH	ЕУАГГE＾OS
3	321987654	KAPAIT¿A乏	KAPAГIQPTOE	NIKOE
4	023890026	AAPİAट	KOTPQTEIOE	IQANNHE
5	041396589	BOAOY	AAINAE	¿ПYPOE
6	6486123403	¿ODA \triangle NN	ПANAГIQTOY	AOHNA
7	600009871	MOYZAKIOY	ПANAГIQTOY	$\triangle \mathrm{HMHTPH} \mathrm{\Sigma}$
8	864710068	KAPAITEAE	ПANAГIQTOY	IQANNHE
9	664511020	EMAAEQNAE	ПАППАГ	AAEEANAPOS
10	244102441	MAPİAE	TEPZOГAOY	ӨEMH乏
11	564893213	N．IONIAE	ПАППANTQNH乏	APİTEIAHE
12	948297385	KAPAITEAE	КААОГЕРОПОҮАОГ	IMANNHE

Eıóva 13

 олоío $\mu \pi о \rho о и ́ \mu \varepsilon ~ v \alpha ~ \varepsilon \pi ı \lambda \varepsilon ́ \xi о u \mu \varepsilon: ~$
 $\delta \varepsilon \delta o \mu \varepsilon ́ v \alpha$.
－（Прஸ́tа 10．．．）：$\varepsilon \mu ф \alpha v i \zeta \varepsilon \iota ~ \tau \alpha ~ 10 \pi \rho \omega ́ \tau \alpha ~ ท ́ ~ \tau \alpha ~ 10 ~ \tau \varepsilon \lambda \varepsilon \cup \tau \alpha i ́ \alpha ~$

－（Пробариоүף́．．．）：$\mu \pi о \rho о и ́ \mu \varepsilon ~ v \alpha ~ о р i ́ \sigma о и \mu \varepsilon ~ \varepsilon ́ v \alpha v ~ к а v o ́ v \alpha ~ ү ı \alpha ~ т о v ~ \pi \varepsilon \rho ı о \rho ı \sigma \mu o ́ ~ \tau \omega \vee ~ ү \rho \alpha \mu \mu \omega ́ v ~$ лои $Ө \alpha \varepsilon \mu ф \alpha v i ́ \sigma \varepsilon ı ~ т о ~ ф i ́ \lambda \tau \rho о . ~$

 $\mu \varepsilon \mu \pi \lambda \varepsilon \chi \rho \omega ́ \mu \alpha, \delta ı \propto ф \rho \varepsilon \tau เ к \alpha ́ \alpha ~ \varepsilon ́ \chi \varepsilon ı ~ \mu \alpha u ́ \rho o ~ \chi \rho \omega ́ \mu \alpha . ~$

2.5 ЕПІЛОГН КЕЛІІN KАІ ПЕРІОХНг KEへI』N

 тŋv $\mu \pi \alpha \dot{\rho} \rho \alpha$ кú $\lambda \iota \sigma \eta \varsigma$.

 отп $\lambda \omega \dot{v}$ ．

$\alpha \rho ı \theta \mu o ́ \varsigma ~ \gamma \rho \alpha \mu \mu \omega ́ v$ ń Rows x $\alpha \rho \bullet \theta \mu o ́ \varsigma ~ \sigma \tau \eta \lambda \omega \dot{v} \eta$ ń Columns

 кє入ı ．

Eıкóva 16

Eıкóva 17

£ТАӨЕРОПОІНГH TMHMATתN ПAPAOYPOY

 $\sigma \cup \mu \pi \varepsilon \rho ı \phi \varepsilon ́ \rho \varepsilon \tau \alpha \iota \sigma \alpha v$ va ε ivaı $\eta \pi \rho \omega ́ t \eta$.

2．6 ЕІІАГЛГН ONOMATO乏 KEЛIOY＇H ПEPIOXH乏 KENI』N

 $\varepsilon เ \sigma \alpha ́ \gamma o u \mu \varepsilon$ to $\varepsilon \pi \imath \theta u \mu \eta t o ́ ~ o ́ v o \mu \alpha$ ．

 $\delta \iota \alpha ф о \rho \varepsilon т \iota \kappa \alpha ́ \alpha \varepsilon \lambda \iota \alpha ́$.

Eıóva 18：ПapáӨupo סıa入ópou үıa tov Opıбนó

 ка́vovtas кдıк ото عпıӨuиクtó óvo $\mu \alpha$ Eıкóva 19.

 ＂＿» $\pi о \cup \varepsilon เ \sigma \alpha ́ \gamma \varepsilon \tau \alpha \iota \mu \varepsilon$ Shift＋（－）．

Eıkóva 19

2．7 ЕМФANİH ФY＾＾OY EPГA乏IA乏

 $\varepsilon \mu \phi \alpha ́ v i o \eta$ ．

 $\mu \alpha \varsigma . \Delta \varepsilon v ~ \alpha \rho к \varepsilon i ́ ~ \mu o ́ v o ~ v \alpha ~ ү v \omega \rho i ́ ̧ o u \mu \varepsilon ~ \pi \omega ́ \varsigma ~ v \alpha ~ \varepsilon \pi \lambda \lambda u ́ o u \mu \varepsilon ~ \sigma u ́ v \theta \varepsilon \tau \alpha ~ \pi \rho o \beta \lambda n ́ \mu \alpha \tau \alpha ~ \sigma т o ~ E x c e l ~ \alpha \lambda \lambda \alpha ́ ~ \pi \rho \varepsilon ́ \pi \varepsilon є ~$

 фú入入ou عрүабías．

To Excel $\mu \alpha \varsigma \pi \rho \circ \sigma \phi \varepsilon ́ \rho \varepsilon ı \pi о \lambda \lambda \alpha \dot{\alpha} \varepsilon \rho \gamma \alpha \lambda \varepsilon i \alpha, ~ \omega ́ \sigma \tau \varepsilon ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~ \alpha \pi \lambda o ́ ~ ф u ́ \lambda \lambda o ~ \varepsilon \rho ү \alpha \sigma i \alpha \varsigma ~ v \alpha ~$

 rара́Өupa סı $\alpha \lambda$ óyou．

－А А入入аүท́ Граццатобєıрஸ́v．
－$\Sigma \tau o i ́ \chi ı \sigma \eta ~ П \varepsilon \rho ı \varepsilon \chi о \mu \varepsilon ́ v \omega v ~ \tau \omega v ~ K \varepsilon \lambda ı \omega ́ v . ~$
－Морфотоі́ŋбп ApıӨرஸ́v．
－Хрஸ́ $\mu \alpha \tau \alpha$ каı Пعрıүра́ $\mu \mu \tau \alpha$ ．

－Проßо入в́я．

EIIAГתГH EIKONA乏

 па́роинє єкко́vєऽ：

 крати́боицв то $\mu \varepsilon ́ \gamma \varepsilon Ө$ оц тои архві́о μ кро́．

廿пфıкќ $\mu \alpha \varsigma \mu \eta \chi \alpha v \eta$ ．

2.8 โYNDE乏H ПO＾＾AПへএN ФYへへএN EPГA乏IA乏

3 ЕПЕЕЕРГАГIA $\triangle E \Delta O M E N \Omega N$

 MaӨпиатıки́v $\varepsilon v v o \iota \omega ́ v$.

3.1 ТҮПОІ

 غ́xouv $\alpha v \alpha ф о \rho \alpha ́$. Autó $\mu \alpha \varsigma ~ \pi \alpha \rho \varepsilon ́ \chi \varepsilon ı ~ \mu \varepsilon ү \alpha ́ \lambda \eta ~ \varepsilon u \varepsilon \lambda ı \xi i ́ \alpha ~ \sigma \tau \eta v ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha ~ \tau \omega v ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v ~ \mu \alpha \varsigma . ~$

- Avaфор ε к к $\lambda \iota \omega \dot{v}$

- А А $\lambda \varepsilon \dot{\varepsilon} \varsigma ~ \sigma u v \alpha \rho t n ́ \sigma \varepsilon ı \varsigma ~ ү ı \alpha ~ \varepsilon к т \varepsilon ́ \lambda \varepsilon \sigma \eta ~ \pi . \chi . ~ \alpha Ө \rho o i \sigma \mu \alpha т o \varsigma ~(s u m), ~ \mu \varepsilon ́ \sigma o u ~ o ́ \rho o u ~(a v e r a g e) ~ к . \lambda . \pi . ~ \alpha \lambda \lambda \alpha ́ ~$

- 'A入入ous $\varepsilon \pi \mu \mu$ ह́pous túrous.

=280*0,06	
=A1/B1	$\Delta \varepsilon \delta$ о μ ह́v α tou к $\ell \lambda$ เoú $B 1$
$=' E \sigma 0 \delta \alpha-$ ' $\mathrm{E} \xi 0 \delta \alpha$	то Kع λi i $\mu \varepsilon$ óvo $\mu \alpha$ «'Eooठ α »
=sum(A4:B18)	 Excel
=A5=E5	 $\varepsilon v \omega \dot{\alpha} \alpha \lambda \lambda เ \omega \dot{\varsigma} \emptyset \alpha$ عival FALSE ($\psi \varepsilon \cup \delta \varepsilon ́ \varsigma)$

乏 $\eta \mu \varepsilon i \omega \sigma \eta$:

 Eıкóva 20 óтоu $\alpha \pi \varepsilon เ к о v i \zeta \varepsilon \tau \alpha ı ~ \varepsilon ́ v \alpha \varsigma ~ \alpha \pi \lambda o ́ \varsigma ~ \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha \sigma \mu o ́ \varsigma ~ \tau \omega v ~ к \varepsilon \lambda ı \omega ́ v ~ A 1 ~ \& ~ B 1 . ~$

§ Microsoft Excel - BıB入io1				
C1		$f_{x}=\mathrm{A} 1 * \mathrm{~B} 1$		
	A	B	C	D
1	1500	4	6000	
2	2400	3		
3	4350	5		
4	6120	6		
5	8800	7		
Eıkóva 20				

ANAФOPEL TҮПתN

 ठои入є

- $\Sigma \chi \varepsilon \tau \kappa \kappa \varepsilon ́ \varsigma ~ A v \alpha \varphi о \rho \varepsilon ́ \varsigma ~$

- Aтódutгऽ Avaبo

- Avá $\mu \varepsilon เ \kappa \tau \varepsilon \varsigma ~ A v \alpha \varphi o \rho \varepsilon ́ \varsigma ~$

ПАРАФЕІГМА

 $\varepsilon \pi i$ tou $\beta \alpha \sigma ı \kappa$ й touc μ וбӨoú Eıкóva 21.

区 Microsoft Excel－Biß入io1．xls					
			Eic	Toywy	Epyodzia stoio
	A	B	C	D	E
1		Baбikós Mıб日ós（€）		Побобтó 	Етוסо́тŋбワ $\sigma \varepsilon$ Eupú
2	Iwówou	998		12\％	$=\mathrm{B2}$＊$\$ \mathrm{D}$ \＄2
3	Пamaōnunipiou	1.280			
4	Nikodótoutos	1.078			
5	Kpaßaplóms	1.560			
6	Mixadótouios	760			
7					

 бто D2）．

Eıкóva 22：Emıסótnon $\sigma \varepsilon$ Eupú avá uró $\lambda \lambda \eta \lambda o$

 то отоіо $\delta \varepsilon v$ єпөӨицои́ μ.

气 $\eta \mu \varepsilon i \omega \sigma \eta$ ：

§ Microsoft Excel－BıB入io1．xls						
：区－						
A Arial						
SUM \quad－\times fx $=B 5^{*} \mathrm{D}$ \＄2						
	A	B	C	D	E	F
1		Bafikós Mıб日ós（€）		Побобто́ 	Етıסо́тףбף oє Eupú	
2	lwówou	998		12\％	119，76	
3	Паттабпиитрíou	1.280			153，60	
4	Niкоגótroudos	1.078			129，36	
5	Kpaßapıı́t力s	1.560			＝B5＊${ }^{\text {² }}$ \＄2	
6	Mixadótoudos	760			91，20	
7						
8						

3．2 TENE

 avaфора́s．

＋（oúßßo入o ouv）	ПрóбӨzбп（＝A2＋B4）
－（oú $\mu \beta$ о入o μ ciov）	Aфаipعon（＝B32－E5）
＊（ α тєрі́бкоऽ）	По入入ал入入бı $\alpha \sigma$ оóऽ（＝B2＊K2）
／（סıаү⿳亠二口阝ıı¢）	－ııipeon（＝M32／I4）
\％（бúpß०入o побоотоú）	Побобтó（＝20\％）

Avaф่́

 $\mu \pi о \rho \varepsilon i ́ v \alpha \pi \varepsilon \rho \iota \lambda \eta \phi \theta \varepsilon i ́ \sigma \tau \iota \varsigma \pi \rho о \eta ү о u ́ \mu \varepsilon v \varepsilon \varsigma ~ к \alpha т \eta \gamma о \rho i \varepsilon \varsigma$.

＝（бúpßо入o เбótףtas）	loo $\mu \mathrm{\varepsilon}$（＝A1＝B1）
＜（бú䶹ßо入о μ ккоо́тєоо ато́）	Мккоо́тєро α ко́（＝A1＜B1）
	$\Delta \varepsilon v$ เбoútal $\mu \varepsilon$（＝A1＜＞B1）

	＇Evvoı ${ }^{(\pi \alpha \rho \alpha \dot{\delta} \delta \varepsilon \iota ү \mu \alpha)}$
：（ $\alpha \dot{v} \omega$ к α к к α т ω т $\varepsilon \lambda \varepsilon i \alpha)$	
，（кó $\mu \mu \alpha$ ）	（SUM（A5：B35，D4：D285））

Пívaкаৎ 4：Тદ入દбтદ́ৎ $\alpha v \alpha ф о \rho \alpha ́ \varsigma ~ \sigma т о ~ E x c e l ~$

Tع入凤бтท＇	Протвраıо́tワ	
（）	1	
－	2	
\％	3	Побобтó
\wedge	4	
＊к $\mathrm{l}^{\prime} /$	5	
＋к α－	6	Про́бӨzбך каı α ¢аіргбп
\＆	7	
$\begin{aligned} =<> & <= \\ & >= \\ & <> \end{aligned}$	8	¿úүкрıбп

ПАРАФЕІГМА 1

 $\sigma \varepsilon \iota \alpha \dot{\text {. }}$

\$ Microsoft Excel - BıB入io1							
$\mathrm{F} 1 \quad \mathrm{fx}^{\text {a }}=\mathrm{A} 1+\mathrm{B} 2-\mathrm{B} 3 * \mathrm{~B} 5 / \mathrm{A} 5$							
	A	B	C	D	E	F	
1	1500	4	6000	10	2003	1502,996	
2	2400	3		20	2004		
3	4350	5		30	2005		
4	6120	6		40	2006		
5	8800	7		50	2007		
6							

§ Microsoft Excel - BıB入io1						
! Arial						
F1		$f_{x}=(\mathrm{A} 1+(\mathrm{B} 2-\mathrm{B} 3) * \mathrm{~B} 5) / \mathrm{A} 5$				
	A	B	C	D	E	F
1	1500	4	6000	10	2003	0,168864
2	2400	3		20	2004	
3	4350			30	2005	
4	6120	6		40	2006	
5	8800	7		50	2007	
6						

ПАРАДЕІГМА 2

KAOAPH ПAPOYГA AミIA ($\pi \alpha \rho \alpha ́ \delta \varepsilon \iota ү \mu \alpha \mu \varepsilon \tau \cup ́ \pi о u \varsigma \kappa \alpha \iota ~ \tau \varepsilon \lambda \varepsilon \sigma \tau \varepsilon \varsigma) ~$

 Eikóvas 28.

Eıкóva 28

EПE=HГHEH

 ε ६ท́ऽ тúto $1 /(1+x)^{v}$.

о́тоu x : عíval to عாıtóкıo

 єпто́кıо 10\% عíval:
$1 /(1+x)^{v}=1 /(1+10 \%)^{*}(1+10 \%)^{*}(1+10 \%)^{*}(1+10 \%)^{*}(1+10 \%)=0,62$

$$
1 /(1+x)^{1}+1 /(1+y)^{2}+1 /(1+z)^{3}+\ldots+1 /(1+m)^{v}
$$

 $\mu \varepsilon ́ \chi \rho \iota ~ т о ~ к є \lambda i ́ ~ F 8 . ~$

3.3 โYNAPTH乏EI乏

 проүра́ $\mu \mu \alpha т о \varsigma ~ \pi о u ~ \mu \alpha \varsigma ~ \pi \alpha \rho \varepsilon ́ \chi о u v ~ \mu \varepsilon ү \alpha ́ \lambda \varepsilon \varsigma ~ \delta u v \alpha t o ́ t \eta t \varepsilon \varsigma ~ \mu \varepsilon ~ \pi о \lambda u ́ ~ \varepsilon u ́ к о \lambda о ~ \chi \varepsilon เ \rho เ \sigma \mu o ́ . ~$

ПАРАФЕІГМА

 бuvaptท́бєıৎ, ovó $\mu \alpha \tau \alpha \pi \varepsilon \rho เ о \chi \omega ́ v ~ к \alpha ı ~ \alpha ́ \lambda \lambda \alpha . ~$

 кع入í tou фú入入ou epүaбiac．

EYNAPTHEH SUM

EYNAPTHEH MAX

 255.

EYNAPTHEH MIN

£YNAPTH

 т $\mu \eta$ ท̆ $\mu \eta \delta \varepsilon ̇ v(0)$.

 $\alpha \rho 1 \theta \mu$ ós t ωv V

ミYNAPTHEH COUNT

 $\alpha \rho ı \theta \mu$ о́s.

ミYNAPTHEH IF

 отоххвio tou лivaка.

3.4 โYГKENTP@TIKOI ПINAKE乏

 इиүкєитрштккои́ Пívaка.

इuүкєvтрютıкои́ Пívaка.

 лара́Өuрo єрүабเш́v.

3.5 MEPIKA AOPOI乏MATA - $\Delta I A P O P \Omega \Sigma H$

 ع६ֹ̧́:

 хрпбњолоьи́бочия.

- Пата́ $\boldsymbol{\varepsilon}$ то коицті О.К.

3.6 AYTOMATH AOPOIEH

 31.

Eıкóva 31: Autó $\mu \alpha$ тך ó θ poıəๆ

 $\alpha \pi o ́ ~ t \eta v ~ \alpha \rho \chi n ́ ~ \varepsilon \pi \downarrow \lambda \varepsilon ́\} \varepsilon ı ~ v \alpha ~ t \eta v ~ \varepsilon เ \sigma \alpha ́ \gamma o u \mu \varepsilon . ~$

3．7 TIME乏 £ФAへMATO乏

TIME乏 ¿ФАЛMATO乏	ПIOANE AITIES
\＃\＃\＃\＃\＃\＃\＃\＃	 $\pi \varepsilon \rho เ \varepsilon ́ \chi \varepsilon ا ~ \varepsilon ́ v \alpha v ~ \tau u ́ \pi o ~ \eta \mu \varepsilon \rho о \mu \eta v i ́ \alpha \varsigma ~ ท ́ ~ \omega ́ \rho \alpha \varsigma ~ \pi o u ~$ $\varepsilon \pi ા \sigma \tau \rho \varepsilon ́ \phi \varepsilon \iota \alpha \rho \vee \eta \tau ו \kappa o ́ ~ \alpha \pi о т \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$.
\＃TIMH	 $\alpha \lambda \phi \alpha \rho \ominus \theta \eta \tau$ тко́ $\alpha \pi о т \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$ ．
\＃${ }^{\text {IIAIP．／0！}}$	$\alpha v \alpha ф \varepsilon ́ \rho \varepsilon \tau \alpha \iota ~ \sigma \varepsilon \alpha ́ \delta \varepsilon เ \circ ~ к \varepsilon \lambda i ́ . ~$
\＃ONOMA？	
\＃ΔY	ouváptnon ń $\sigma \varepsilon$ દ́vav túto．
\＃ANAФ	 Má $\lambda \lambda$ ov $\delta \iota \alpha ү \rho \alpha ́ \psi \alpha \mu \varepsilon \mu i \alpha$ л $\varepsilon \rho เ о \chi \eta ́ ~ к \varepsilon \lambda \iota \omega ́ v ~ \sigma \tau \alpha ~$ олоía үivetal $\alpha v \alpha ф о \rho \alpha ́ ~ \sigma \varepsilon ~ к \alpha ́ \pi o เ o v ~ t u ́ \pi o . ~$

\#APIO	 $\mu \varepsilon \gamma \alpha ́ \lambda о$ ท́ μ ккро́.
\#KENO	 avaфорúv.

Пívaка؟ 6

3.8 ЕФАРМОГЕะ

ЕФАРМОГН 1

$2 x+3 y+z=25$
$x-2 y+4 z=9$
$3 x+y-2 z=13$

$2 x+3 y+z=25$
$\Rightarrow Z=25-2 x-3 y$
 25-2x-3y 'A $\rho \alpha$ Ө α غ́

$$
\begin{aligned}
& x-2 y+4 z=9 \\
\Rightarrow & x-2 y+4(25-2 x-3 y)=9 \\
\Rightarrow & x-2 y+100-8 x-12 y=9 \\
\Rightarrow & x-8 x=9-100+2 y+12 y \\
\Rightarrow & -7 x=-91+14 y \\
\Rightarrow & -x=-13+2 y \\
\Rightarrow & x=13-2 y
\end{aligned}
$$

 кац то $\mathbf{z} \mu \varepsilon$ тıৎ $\pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \lambda u ́ \sigma \varepsilon ı \varsigma . ~$

$$
\begin{aligned}
& 3 x+y-2 z=13 \\
\Rightarrow & y=13+2 z-3 x \\
\Rightarrow & y=13+2(25-2 x-3 y)-3(13-2 y) \\
\Rightarrow & y=13+50-4 x-6 y-39+6 y \\
\Rightarrow & y=24-4(13-2 y)-6 y+6 y \\
\Rightarrow & y=24-52+8 y \\
\Rightarrow & -7 y=-28 \\
\Rightarrow & y=4
\end{aligned}
$$

$$
\begin{array}{ll}
& X=13-2 y \\
\Rightarrow & X=13-2 * 4 \\
\Rightarrow & X=13-8 \\
\Rightarrow & X=5
\end{array}
$$

$$
2 x+3 y+z=25
$$

$$
\begin{aligned}
& \Rightarrow \quad Z=25-(2 * 5)-(3 * 4) \\
& \Rightarrow \quad Z=25-10-12 \\
& \Rightarrow \quad Z=3
\end{aligned}
$$

 34.

 тఇท лعрıохŋ́ A2:C2.

 бтŋv $\sigma u v \varepsilon ́ \chi \varepsilon ı \alpha ~ к \alpha ́ v o u \mu \varepsilon ~ к \lambda ı к ~ \sigma т о ~ к о и \mu \pi i ~ О . К . ~$

EФАРМОГН 2

ЕПІ^ОГН ПРОГЛПІКОҮ ME MOPIOДOTHГH

 10 ع $\pi i 100$.

2 A						Mcrostbiced						-6-x
Havie laraxif												
A	8	C	0	E	F	6	H	I	J	K	L	11
cioroon uroungiuv videlijuw												
3 3												
4 Eпǐvyo	Ovopa	Bapajocmuy	Hopolmux	Törogkropuwi'	IMopucuorio	Eivolopopiuv		Eminyónes	Emivupa erin	mxoriwe		Ovoura eminyéruw
5 Myxalions	Feipyos	7825	549	Acuiua	10	649		850	Balubing			「cuphos
6 Пartolavoiou	Aviong	7,2	540	Lajua	100	640		649	Mranioica			Scioplos
1 Mtrypars	Nribloos	6.8	510	Kapida	50	560		640	Lanatuvoio			Avioms
8 Kaldoos	AAmióos	6725	314	Eiven	50	364						
9 Züns	IWónns	5.8	200	Acuiua	100	390						
10 Xocoritixy	Aropear	6.5	488	Mipoo	0	488						
11. Marrus	Apoteions	1	525	Eepucic	50	575						
12 Kónocs		5,9	295	Oeroculowin	0	295						
13 Пéroxas	AAnvious	6	300	Ocoodoloin	0	300						
14.8 Bulofinns	Fexiplos	8.5	850	Abiva	0	850						
$15 \longrightarrow$												
16												

АНМIOYPГIA

BHMA 1

 кат $\alpha \chi \omega \rho \circ$ и́ $\mu \varepsilon \tau \alpha \delta \varepsilon \delta 0 \mu \varepsilon ́ v \alpha \sigma \varepsilon \alpha \cup \tau \varepsilon ́ \varsigma$.
 عוбव́үоиие tov túto:
$=$ ROUND(IF(AND(C5>=5;C5<6,5);C5*50;IF(AND(C5>=6,5;C5<8,5);C5*75;IF(AND(C5>=8,5;C5<=10);C

 tทऽ ε íval ROUND ($\alpha \rho ı \theta \mu o ́ s ; ~ \alpha \rho ı \theta \mu o ́ s _\Psi \eta \phi i \omega v$)

BHMA 2

Nouós	Mópıa
$\Delta \rho \alpha{ }^{\prime} \mu$	100
K $\alpha \beta \alpha \dot{\lambda} \alpha$	50
£と́ ρ ¢¢ऽ	50
三óvөn	50

Пívaкая 7
 ovó $\mu \alpha$ tos $\pi \lambda \eta к т \rho о \lambda$ оүои́ $\mu \varepsilon$ Nouoí каı $\pi \alpha т \alpha ́ \mu \varepsilon$ Enter.

 то олоі́о عival to F5 tov тарака́тш túto:
 ;Проб入ńษعıऽ.xIsm!Nouoi; 2;FALSE))

 бф $\alpha \lambda \mu \alpha т о \varsigma ~ \# \Delta Y . ~$

 $\alpha \pi о \delta \omega ́ \sigma \varepsilon เ \tau \eta ~ \sigma \omega \sigma \tau \eta ่ ~ т \iota \mu ท ่$.

BHMA 3

 ópıб $\mu \alpha$ к $\dot{\theta} \theta \varepsilon$ фор α бع 2 каı 3 avtiototх α.

 бфа́ $\lambda \mu \alpha$ тоऽ \#APIO!

 K عival $\mu \varepsilon \gamma \alpha \lambda u ́ t \varepsilon \rho o ~ \alpha \pi o ́ ~ t o v ~ \alpha \rho ı \theta \mu o ́ ~ t \omega v ~ o \eta \mu \varepsilon i ́ \omega v ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v, ~ \eta ~ o u v a ́ \rho \tau \eta o \eta ~ \alpha \pi o \delta i ́ \delta \varepsilon ı ~ \tau \eta v ~$ т μ ท́ $\sigma ф \alpha ́ \lambda \mu \alpha$ тоৎ \#APIO!

BHMA 4

 аvtiotolx α tous tútous:
=INDEX(Eтш́vu $\mu \alpha ;$ MATCH(850;Mópı $\alpha ; 0)$),
=INDEX(ETడ́vu α; MATCH(649;Mópıa;0)),
=INDEX(Eтш́vu α; $\operatorname{MATCH(640;Mó\rho ı\alpha ;0))~}$
 M7 avtíotorx α tous tútouc:
=INDEX(Ovó $\alpha \alpha$ т α;MATCH(850;Mópıa;0);1)
=INDEX(Ovó $\mu \alpha \tau \alpha ; M A T C H(649 ; M o ́ p ı \alpha ; 0) ; 1)$
=INDEX(Ovó $\mu \alpha \tau \alpha ; M A T C H(640 ; M o ́ \rho ı \alpha ; 0) ; 1)$

 биүкєкрцнє́vŋऽ лєрıохŋ́s.

 αv tíбтоıх α к $\alpha \iota \mu \varepsilon$ t α ovó $\mu \alpha \tau \alpha$.

4 ГРАФНМАТА

 бт α 入оүוбтוка́ фú $\lambda \lambda \alpha$ ．

 $\alpha v \alpha \pi \alpha \rho \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ t \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$ ．Yла́рхદı акó $\mu \alpha$ á $\mu \varepsilon \sigma \eta ~ \sigma u ́ v \delta \varepsilon \sigma \eta ~ t \omega v ~ ү \rho \alpha ф \eta \mu \alpha ́ t \omega v ~ \mu \varepsilon ~ \tau \alpha ~$

4．1 TA MEPH ENO乏 ГРАФНMATO乏

 opı̧óvtios．

 үраф＇́цатоя．

 ouvסuaб μ ó $\alpha \pi$ ó ó $\lambda \alpha$ autá.

 tou á ${ }^{\text {ond }}$ autoú.

4.2 ДНМІОҮРГІА ГРАФНМАТОГ

4.3 ГEIPE $\triangle E \Delta O M E N \Omega N$

 $\mu \pi$ торои́ $\mu \varepsilon$ v α то $\alpha \lambda \lambda \alpha ́ \xi о \cup \mu \varepsilon$ к α L $\alpha \cup$ тó.

4.4 ЕІІН ГРАФНМАТ』N

1. Кик $\lambda_{\iota к}$ Г $\rho \alpha ́ ф \eta \mu \alpha$ ท́ Пít α

 $\tau \alpha$ ко $\mu \mu \alpha \alpha_{\tau} \alpha$.

Eıкóva 37

3. $\Sigma u \sigma \sigma \omega \rho \varepsilon u \mu \varepsilon ́ v \alpha$ Г $\rho \alpha ф \eta ́ \mu \alpha \tau \alpha$

 $\alpha \pi о \kappa \alpha \lambda u ́ \pi t o u v \varepsilon \pi \pi \lambda \lambda \varepsilon ́ o v ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \tau \omega v ~ \tau \mu \eta \mu \alpha ́ \tau \omega v ~ \omega \varsigma ~ \pi \rho ० \varsigma ~ t o ~ \sigma u ́ v o \lambda o . ~$

4. Гр $\alpha ф \dot{\mu \alpha \tau \alpha Г \rho \alpha \mu \mu \omega ́ v ~}$

 ŋ́ $\mu \varepsilon$ биүкєкрццв́vєৎ катпүорі́єऽ.

5. Гро́фпиа Пعрıохŋ́я

 $\alpha v \alpha \pi \alpha \rho \alpha ́ \sigma \tau \alpha \sigma \eta ~ t o u ~ o ́ ү к о u ~ \tau \omega v ~ \pi \omega \lambda \eta ́ \sigma \varepsilon \omega v ~ \alpha v \alpha ́ ~ \pi \varepsilon \rho ı о \chi \eta ́ . ~$

Eıкóva 42

6. Гр $\alpha \not \emptyset \eta \mu \alpha \Delta к т и \lambda i o u$

Eıкóva 43

7. Гро́ф $\eta \mu \alpha$ XY

 $\varepsilon ф \alpha \rho \mu о ү \varepsilon ́ \varsigma$.

Eıкóv α 44: Гро́ф $\eta_{\mu} \alpha$ X-Y

8. Гро́фпиа Мєтохผ́v

Eıkóva 45

 бП $\mu \varepsilon i ́ \alpha ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v ~ \sigma \tau \eta ~ \sigma \varepsilon เ \rho \alpha ́ ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v . ~$

Eıkóva 46

Eıкóva 47

11. 乏úvӨะt Г Г $\alpha ф \dot{\mu \alpha \tau \alpha ~}$

Eıкóva 48

12. T $\rho เ \sigma \delta เ \alpha ́ \sigma \tau \alpha \tau \alpha$ Г $\rho \alpha ф \eta ่ \mu \alpha \tau \alpha$ (3D)

Eıкóva 49: Eтı入оүи́ тútou $\Sigma \tau \dot{\lambda} \lambda \eta$ 3- Δ

Eıкóva 50

13. Гр $\alpha ф \eta_{\mu} \alpha \tau \alpha$ Spark line

Eıóva 51: Графท́ $\mu \alpha \tau \alpha$ túл ωv spark line
 عivaı $\tau \alpha \varepsilon$ € $\mathfrak{\text { ńs: }}$

Eıкóva 52: Opád α spark line

 каı $\alpha \lambda \lambda \varepsilon \varsigma ~ \pi о \lambda \lambda \varepsilon ́ \varsigma ~ \rho u Ө \mu i ̈ \sigma \varepsilon ı \varsigma . ~$

 $\pi \lambda$ и́ктро Delete $\delta \varepsilon v \lambda \varepsilon \iota \tau о \cup \rho \gamma \varepsilon$ í.

 ка́vou $\boldsymbol{\varepsilon}$.

4.5 ТРОПОПОІНГН ГРАФНМАТЛN

 $\pi \alpha \rho \alpha ́ \theta u \rho o ~ \delta \iota \alpha \lambda o ́ y o u ~ t n \varsigma ~ E ı k o ́ v a \varsigma ~ 54 . ~$

Eıкóva 54: Пара́Өupo סıа入óүou Túлоৎ үрафท́भатоৎ

K $\alpha \tau_{\alpha}$ үр $\alpha \mu \mu \dot{\prime}$

Гı α v $\alpha \underline{\delta \iota \alpha ү \rho \alpha ́ \psi о u \mu \varepsilon ~ \varepsilon ́ v \alpha ~ ү \rho \alpha ́ ф \eta \mu \alpha, ~ т о ~} \varepsilon \pi \iota \lambda \varepsilon ́ \gamma о u \mu \varepsilon ~ к \alpha ı ~ \pi \alpha т \alpha ́ \mu \varepsilon ~ т о ~ \pi \lambda \eta ́ к т \rho о ~ D e l e t e . ~ Г ı \alpha ~ v \alpha ~$

 va үі́vєı $\eta \mu \varepsilon \tau \alpha ф о \rho \alpha ́ . ~$

 тútou үрафท́भатоৎ, Eıкóvа 54.

 $\varepsilon \mu \phi \alpha v i \zeta \varepsilon \tau \alpha \iota$ то $\pi \alpha \rho \alpha ́ \theta \cup \rho o ~ \delta ı \alpha \lambda o ́ \gamma o u ~ E \pi ı \lambda о ү \eta ́ ~ \alpha \rho \chi \varepsilon i o u ~ \pi \rho о \varepsilon ́ \lambda \varepsilon u \sigma \eta ৎ ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v ~ к \alpha ı ~ к \alpha ́ v o u \mu \varepsilon ~$

4.6 МОРФОПОІНЕН ГРАФНМАТОะ

 $\pi \lambda \dot{́} \kappa \tau \rho \omega v$ عívaı Ctrl+1.

 бхદסíaøŋร.

Eıкóva 57: Морфолоiŋбף лعрıохท́ৎ бхعסíaбŋৎ

Eıкóva 58

4.7 XPH乏H EIKON Ω N Г ГРАФНМАТА

 кávou ε к каı $\delta \iota \pi \lambda o ́ ~ к \lambda เ к ~ \pi \alpha ́ v \omega ~ \sigma \tau \eta v ~ \varepsilon เ \kappa o ́ v \alpha) . ~$

 фóvto $\sigma t \eta v ~ \pi \varepsilon \rho เ о \chi \grave{~} ү \rho \alpha ф \grave{\mu \alpha т о \varsigma . ~ E ı к o ́ v \alpha ~} 60$

 $\mu \varepsilon v o u ́ ~ \sigma u v t o ́ \mu \varepsilon u \sigma \eta \varsigma, ~ \varepsilon \pi ı \lambda \varepsilon ́ \gamma о u \mu \varepsilon ~ М о р ф о т о i ́ \eta \sigma \eta ~ \sigma \varepsilon ı \rho \alpha ́ \varsigma ~$ $\delta \varepsilon \delta o \mu \varepsilon ́ v \omega v$...

 عוбаүшүńs фóvtou.

 парака́тш Eıко́vа 61.

Eıкóv α 61: Eıкóv α үı α алعıкóvıఠך $\mu \iota \alpha \varsigma ~ \sigma \varepsilon ı \rho a ́ \varsigma ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v ~$

4．8 ЕКТҮПЛГН ГРАФНМАТО乏

 ко́vочиє клщ бто коииті

 סıа入óүou Eıкóva 62．Tદ́入os $\pi \alpha т \alpha ́ \mu \varepsilon ~ t o ~ к о и \mu \pi i ́ ~ O K . ~$

Eıкóva 63

 Пропүоú $\mu \varepsilon v \eta$ $\sigma \varepsilon \lambda i \delta \alpha$.

Eıкóv α 64: К $\alpha \rho \tau \varepsilon ́ \lambda \alpha$ Гро́ф $\eta \mu \alpha$ тоu п $\alpha \rho \alpha \theta$ úpou $\Delta ı \alpha \mu o ́ \rho ф \omega \sigma \eta ~ \sigma \varepsilon \lambda i \delta \alpha \varsigma ~$

5 ЕФАРМОГЕГ

5．1 ANANYรH $\triangle E \Delta O M E N \Omega N$ OEPMOKPA乏IA乏

ME XPH乏H E＾AXİTתN TETPAГЛN $\Omega \mathrm{N}$

ЕПЕЕНГНГН

$\delta ı \alpha$ ú $\mu \alpha v \sigma \eta=\left((X 1-M . T .)^{2}+(X 2-M . T .)^{2}+(X 3-M . T)^{2}+\ldots+(X v-M . T)^{2}\right) / \mathrm{V}$.

 кє入íl 142.

 о $\mu \lambda \lambda \varepsilon ́ \varsigma ~ ү р а \mu \mu \varepsilon ́ \varsigma . ~$

ЕПЕЕНГНГH ГIA THN TA乏H OEPMOKPA乏IA乏

$\Delta \eta \lambda \alpha \delta \eta E_{i}=\mathbf{Y}_{\mathbf{i}}-\widehat{\boldsymbol{Y}}_{\mathrm{i}}$

$$
\Sigma_{i=1}^{v} E_{i}^{2}=\Sigma_{i=1}^{v}(Y i-\widehat{Y} i)^{2},
$$

 opí̧६tal $\alpha \pi o ́ ~ t \eta v ~ \varepsilon \xi i \sigma \omega \sigma \eta: ~$

$$
\widehat{\mathbf{Y}}=\widehat{\boldsymbol{\alpha}}+\widehat{\boldsymbol{\beta}} * X
$$

 $\tau \varepsilon \tau \rho \alpha \gamma \omega \dot{v} \omega v \tau \omega v \sigma \phi \alpha \lambda \mu \alpha \dot{\tau} \omega \nu$

$$
\begin{aligned}
\Sigma_{i=1}^{v} E_{i}^{2} & =\Sigma_{i=1}^{v}(Y i-\widehat{Y} i)^{2} \\
& =\Sigma_{i=1}^{v}(Y i-\widehat{\alpha}-\widehat{\beta} * X i)^{2}
\end{aligned}
$$

$$
\widehat{\beta}=\frac{\Sigma_{i=1}^{v}(X i-\bar{X})(Y i-\bar{Y})}{\Sigma_{i=1}^{v}(X i-\bar{X})^{2}}
$$

к α
$\widehat{\alpha}=\bar{\gamma}-\widehat{\beta} \bar{X}$

Erions ıoxúouv kal ol tútoı

$$
\widehat{\beta}=\frac{\Sigma_{i=1}^{v} X i * Y i-v * \bar{X} * \bar{Y}}{\Sigma_{i=1}^{v} X i^{2}-v * \bar{X}^{2}}=\frac{S_{X Y}}{S_{X X}}=\frac{\left(v * \Sigma_{i=1}^{v} X i * Y i\right)-\Sigma_{i=1}^{v} X i * \Sigma_{i=1}^{v} Y i}{v * \Sigma_{i=1}^{v} X i^{2}-\left(\Sigma_{i=1}^{v} X i\right)^{2}}
$$

к $\alpha \iota$

$$
\widehat{\alpha}=\frac{\Sigma_{i=1}^{v} Y i * \Sigma_{i=1}^{v} X i^{2}-\Sigma_{i=1}^{v} X i * \Sigma_{i=1}^{v}(X i * Y i)}{v * \Sigma_{i=1}^{v} X i^{2}-\left(\Sigma_{i=1}^{v} X i\right)^{2}}
$$

 סוєuкóduvon $\mu \alpha \varsigma$

N	Xi	Yi	$X i^{2}$	$Y i^{2}$	$\mathbf{X i}{ }^{*} \mathbf{Y} \mathbf{i}$	$\begin{aligned} & (\mathrm{Xi}-\overline{\mathrm{X}})^{*} \\ & (\mathrm{Yi}-\overline{\mathrm{Y}}) \end{aligned}$	$(\mathbf{X i}-\overline{\mathbf{X}})^{\mathbf{2}}$
1	1947	16,7	3790809	278,89	32514,9	-16,4	420,25
2	1948	15,6	3794704	243,36	30388,8	5,85	380,25
3	1949	15,6	3798601	243,36	30404,4	5,55	342,25
\cdots
....
.....		
40	1986	15,7	3944196	246,49	31180,2	-3,7	342,25
41	1987	15,5	3948169	240,25	30798,5	$-7,8$	380,25
42	1988	15,7	3952144	246,49	31211,6	-4,1	420,25
V	82635	667,2	162590533	10613,56	1312543,7	-172,3	6170,5

$\widehat{\beta} \approx-0,028$
кגı
$\widehat{\alpha} \approx 70,83$

 15,39.

$Y=\left(\alpha \pm \delta_{\alpha}\right)+\left(\beta \pm \delta_{\beta}\right) * X$
'Отои

$$
\delta_{\alpha}=\sqrt{\frac{\Sigma_{i=1}^{v}(Y i-\alpha-\beta X i)^{2}}{v-2}} * \sqrt{\frac{\Sigma_{i=1}^{v} X i^{2}}{v * \Sigma_{i=1}^{v} X i^{2}-\left(\Sigma_{i=1}^{v} X i\right)^{2}}}
$$

$$
\delta_{\beta}=\sqrt{\frac{\Sigma_{i=1}^{v}(Y i-\alpha-\beta X i)^{2}}{v-2}} * \sqrt{\frac{v}{v * \Sigma_{i=1}^{v} X i^{2}-\left(\Sigma_{i=1}^{v} X i\right)^{2}}}
$$

Eıкóva 68

5．2 ANAへYミH $\triangle E \Delta O M E N \Omega N ~ K T H N O T P O Ф I A \Sigma ~ А П О ~ T O N ~ О П Е К Е П Е ~$

To $\pi \alpha \rho \alpha \kappa \alpha ́ t \omega ~ \pi \alpha \rho \alpha ́ \delta \varepsilon ı ү \mu \alpha ~ \varepsilon i v \alpha ı ~ \eta ~ \pi \rho \alpha ́ ध \eta ~ o ́ \sigma \omega v ~ \varepsilon ́ \chi o u v ~ \varepsilon ı \pi \omega \theta \varepsilon i ́ ~ \sigma \varepsilon ~ \alpha u t \eta ́ v ~ \tau \eta v ~ \varepsilon \rho ү \alpha \sigma i \alpha . ~ Ө \alpha ~ \mu \alpha \varsigma ~$

 т $\alpha \pi \alpha \rho \alpha \kappa \alpha \dot{\tau} \omega$ ．

4	A	B	E	F	H	J	K	L	M	N	0	P	Q	R	S	T	－
1	Eviox	Пурıф¢́рєıа	1η Үпокатпүоріа	Tщи́ 1п¢ Yжокатпүоріа¢	Tщท́ 2п¢ Yпокатпүоріая												
2	2010	\triangle YTIKHE EMAADAE		250727	796187	58512											
3	2010	\triangle TTIKHE EMNADAE	АППАРАГОГНЕ TIA THN	154													
4	2010	\triangle YTIKHE EMAA ${ }^{\text {a }}$ AE	2－6 MHNRN	1906	3806	30643											
5	2010	\triangle YTIKHE EMAADAE	2－6 MHNSN	1990	4185	5008											
6	2010	\triangle YTIKHE EMAADAE		98													
7	2010	\triangle YTIKHE EMAADAE	＜$=6 \mathrm{MHN}$ תN	9	100												
8	2010	\triangle YTIKHE EMAADAE	NAZOYEEE AIEAAAEE CIA	13305													
9	2010		＜＝6MHNSN	22	183												
10	2010	\triangle YTIKHE EMAADAE	XOIPOMHTEPES	11599	2385												
11	2010	$\triangle Y T I K H \Sigma ~ E M A A \triangle A \Sigma ~$	КОПОІНгНг	0	200	10											
12		£úvo入o－\triangle YTIKHE EMAADA乏				94173											
13		M．O．－\triangle YTIKHE EMNADAE				23543，25											
14	2010	ATTIKHE		44242	96740	6916											
15	2010	ATTIKHE	2－6 MHNON	185	883	2152											
16	2010	ATTIKHE	2－6 MHNON	177	391	161											
17	2010	АדTIKHE	＜$=6 \mathrm{MHN}$ ת N	1	8												
18	2010	АТTIKHE	$<=6 \mathrm{MHN}$ תN	0	9												
19	2010	АTTIKHE		11750													
20	2010	ATTIKHE		388													
21						9229											
22		M．O．－АТTIKHE				3076，333333											
23	2010	ETEPEAE EMNADAE		66975	105344	10546											
24	2010	ETEPEAE EMNADAE	АПАРАГОГНЕ IIA THN	14													
25	2010	ETEPEAE EMAADAE	2－6 MHNRN	540	1831	3875											
26	2010	¿TEPEAS EMAADAE	2－6 MHNSN	344	666	216											
27	2010	ETEPEAE EMAADAE	＜$=6 \mathrm{MHNSN}$	9	0												
28	2010		AAZOYEEL ATEAAAEE TIA	1292													
29	2010		＜$=6$ MHNSN	11	2												
30	2010	ETEPEAE EMNADAE	XOIPOMHTEPES	58	120												
31	2010	£TEPEAE EMAADAE	KOпOIHEHE	15	210	6											
32	2010	ETEPEAE EMAADAE		257945													
33	2010	こTEPEAE EMNADAE		300													
34	2010			110971	145930	16271											
35	2010		2－6 MHNRN	121	278	1056											
36	2010	ETEPEAE EMAADAE	2－6 MHNRN	126	1065	89											
37	2010	ГTEPEAE EMAADAE	＜$=6 \mathrm{MHNSN}$	15	65												
38	2010	ETEPEAE EMAADAE	NAZOYEEL ATEAAAEE TIA	334													
39	2010	ETEPEAE EMNA	＜$=6$ MHNSN	15	89												
40	2010	ミTEPEAL EMNA	XOIPOMHTEPES	61	211												\checkmark
	Works		livakas／Mepı⿺̇ A日poiou		ата 2 ／Гра甲пиата／\％		114										

 عíval $\chi \omega \rho \iota \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \sigma \varepsilon:$

 $\mu \varepsilon ́ \chi \rho ı ~ 6 \mu \eta v \omega ́ v$.
 1 илокатпүорі́а.
 $\mu \eta v \omega ́ v$.
 2 илокатпүорі́а.
 $\mu \eta v \omega ́ v$.
 3 илокатпүорі́а.

 үı ó入 $\varepsilon \varsigma ~ \tau ı \varsigma ~ \pi \varepsilon р ı ф \varepsilon ́ р \varepsilon є є \varsigma . ~$

${ }_{4}$ A	8	c	0	£
1				
2	nepфepaa	(ORa)		
3				
4		$\triangle \varepsilon \delta o \mu c ̇ v a$		
5	Katnyopia $\quad \square$	- AӨрообиа ало́ Tup' 1nc Y:'A	Өрообиа ало́ Turi 2nc Y:	Өрообиа ало' Tun' 3nc Y
6	АІГОПРОВАТА	3.770.467,0	8.192.863,0	634.738,0
7	BOOEIDH APEENIKA	36.751,0	111.434,0	25.113,0
8	BOOEILH ӨHAYKA	36.936,0	99.561,0	365.491,0
9	ГOYNOФOPA	7.460,0		
10		(5.468,0		
11	IIAT/NEL EПIMEIMMEL OHMAZOYEEE ATENAAEE [IA THN ПPOEOETH ENIEXYEH	142.485,0		
12		\| 1.371,0		
13		7 7832,0		
14	IIAT/NEL ПPOBATINEL AYTOXOONHL DYAHE ETTEFPAMMENE乏 LTO TENEAA. E	E 21.375,0		
15	1 ІПОО APEENIKO\|	815,0	9.259,0	
16	ІППОІ ӨНАҮKOI	947,0	11.386,0	
17	KOYNENA	4.704,0		
18	META=OEKSAHKE2 (KOYTIA)	$3.513,0$		
19	OPNIOOEIAH	10.390.181,0		
20	¿ОАГЕNTA AIГОПРОВАТА ЕКTATIKOПОІНГНГ	7.163,0	9.772,0	595,0
21	XOIPOINA EAEYGEPAE BOEKHE	83.421,0	100.979,0	
22		14.520.889,0	8.535.254,0	1.025.937,0
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
-19 ${ }^{\text {H }}$		[1\% 2	11	III

 $\eta \lambda \iota \kappa i \alpha \mu \varepsilon ́ \chi \rho \iota ~ 6 \mu \eta v \omega ́ v$.

ВІВЛІОГРАФІА－ПНГЕГ ПЛНРОФОРІএN．

1．\triangle ．KAPONI $\triangle H \Sigma$ \＆K．इAPXAKO Σ ，＜＜microsoft office excel $2010 \gg$ ，AOHNA 2010，EK $\triangle O \Sigma E I \Sigma$ ABAKAI．

2．$\Delta . K A P O N I \Delta H \Sigma \& K$ ．ЕAPXAKO $\Sigma, \ll \beta \iota \beta \lambda \iota$ ict intermediate \gg ，AOHNA 2004，EK $\Delta O \Sigma E I \Sigma$ ABAKAE．

 OPHइKEYMAT Ω N．

4．INGLESIAS－V．CARDINALE，＜＜Microsoft Office Excel 2003 Eríreסo 1 ＞＞，AOHNA 2006， Гкıои́ $\delta \delta \alpha$ ．

5．FRYE C．，＜＜Microsoft Office Excel 2003 Bń $\mu \alpha-B \eta \dot{\mu} \mu \gg$ ，AӨńva：K $\lambda \varepsilon \iota \delta \alpha ́ \rho ı \theta \mu \circ \varsigma, 2004$.
6．MARAN R．，＜＜Visual E $\lambda \lambda \eta v i \kappa o ́ ~ M i c r o s o f t ~ E x c e l ~ 2003 ~ E u ́ к o \lambda \alpha \gg, ~ A Ө \eta ́ v \alpha: ~ K \lambda \varepsilon ı \delta \alpha ́ \rho ı Ө \mu о \varsigma, ~ 2003 . ~$
7．М．＾EONTIO乏，＜＜Yло入оүıбтька́ Фú $\lambda \lambda \alpha$ Excel 2003 ＞＞，AӨńva：Гкıоúpठаৎ， 2006.
8．$\Sigma . ~ П А П А \triangle A K H \Sigma, ~ N . ~ X A T Z Н П Е Р Н \Sigma, ~ \ll ~ B \alpha \sigma ı к \varepsilon ́ \varsigma ~ \Delta \varepsilon є ı o ́ t \eta \tau \varepsilon \varsigma ~ \sigma \tau ı \varsigma ~ T . П . E . ~ \gg, ~ A \Theta H N A ~ 2005 . ~$
9．MARAN R．，＜＜Teach Yourself VISUALLY Excel 2003 ＞＞，AӨńva：K入عı $\delta \alpha \dot{\rho} \rho \bullet \Theta \mu \varsigma, 2006$.
 Excel 2007 ＞＞，AӨńva：K $\lambda \varepsilon เ \delta \alpha ́ \rho ı \theta \mu \circ \varsigma, 2009$.

11．М．ГР．ВОГКОГ＾ОҮ，＜＜М $\alpha \theta \eta \mu \alpha \tau \iota \alpha \gg$ ，ПАТРА 2005.
12．П．OIKONOMOY \＆X．KAP Ω NH，＜＜$\Sigma \tau \alpha \tau \iota \sigma t \kappa \alpha ́ ~ M o v t \varepsilon ́ \lambda \alpha ~ П \alpha \lambda ı v \delta \rho o ́ \mu \eta \sigma \eta \varsigma ~ \gg, ~ A \Theta H N A ~ 2010, ~$ EK $\triangle O \Sigma E I \Sigma \Sigma Y M E \Omega N$ ．
13．X．ГNAP $\Delta \mathrm{E} \wedge \mathrm{H} \Sigma$ ，＜＜Eфар

ПНГЕГ ПАНРОФОРІ Ω ．

 аváктпбףऽ 3／9／2013．
2．http：／／nemertes．lis．upatras．gr／jspui／bitstream／10889／1086／1／Nimertis Papageorgiou（n）．pdf

 aváктŋoŋ̧ 26／8／2013．
3．http：／／www．schools．ac．cy／klimakio／Themata／epistimi／vivlio／1B．pdf＾opıotıка́ Фú $\lambda \lambda \alpha$ ， $\eta \mu \varepsilon \rho о \mu \eta v i ́ \alpha ~ \alpha v \alpha ́ к т \eta \sigma \eta \varsigma ~ 3 / 9 / 2013$.

5．http：／／el．wikipedia．org／wiki／Báoŋ $\Delta \varepsilon \delta о \mu \varepsilon ́ v \omega v, ~ \eta \mu \varepsilon \rho о \mu \eta v i \alpha \alpha v \alpha ́ к \tau \eta \sigma \eta \varsigma ~ 3 / 9 / 2013$.
6．http：／／www．physics．upatras．gr／UploadedFiles／course 225 4334．pdf Δ เaфáveıєऽ үıа tףv

7．http：／／www．unipi．gr／faculty／mkoutras／regres／regres1 1．pdf Avá $\lambda \cup \sigma \eta$ П $\alpha \lambda ı v \delta \rho o ́ \mu \eta \sigma \eta \varsigma$ ，

